期刊文献+

基于物体面对应的RGB-D图像拼接优化方法

RGB-D image mosaic optimization method based on object-face correspondence
下载PDF
导出
摘要 针对RGB-D中深度图像分辨率低、范围小、噪声大而不利于三维重建的问题,研究了一种基于物体面对应的RGB-D图像拼接优化方法。先对RGB-D图像进行预处理对齐,使用基于特征匹配算法对特征点提取和粗匹配,其次通过本文研究的不同视角下同一物体面对应关系来剔除误匹配,最后根据单应矩阵得到宽视角的RGB-D图像以及三维模型。本文使用了尺度不变特征变换(SIFT)、加速稳健特征(SURF)和定向FAST和旋转BRIEF (ORB)3种算法来进行对比实验。实验结果表明,添加本文方法后的算法在有形变、旋转的图像上分别剔除41%、29%和52%的误匹配,均方根误差减少了5%、27%和33%。在缩放的图像上分别剔除53%、57%和51%的误匹配,均方根误差减少了14%、17%和28%,提高了匹配精度,验证了本文方法的可行性。 An object-face based RGB-D image stitching optimization method is studied to solve the problem of low resolution, small range, and high noise of RGB-D depth images, which is not conducive to three-dimensional reconstruction. First, the RGB-D images are pre-processed and aligned;the feature points are extracted and roughly matched using the algorithm. Then, the mismatching is eliminated by the corresponding relationship of the same object face under different perspectives studied in this paper. Finally, the RGB-D images with wide viewing angles and three-dimensional models are obtained based on the homography matrix. Three algorithms, Scale-Invariant Feature Transform(SIFT), Speeded Up Robust Features(SURF), and Oriented FAST and Rotated BRIEF(ORB), are used for comparison experiments. The experimental results show that 41%, 29%, and 52% erroneous matches are removed on distorted and revolved images, and the Root Mean Square Error is reduced by 5%, 27%, and 33% respectively. In the scaled image, 53%, 57%, and 51% erroneous matches are removed, and the Root Mean Square Error is reduced by 14%, 17%, and 28%, which improves the matching accuracy and verifies the feasibility of this method.
作者 于广旺 杨家志 陈梦强 沈洁 Yu Guangwang;Yang Jiazhi;Chen Mengqiang;Shen Jie(College of Information Science and Engineering,Guilin University of Technology,Guilin 541006,China;Guangxi Key Laboratory of Embedded Technology and Intelligent System,Guilin 541006,China)
出处 《电子测量技术》 北大核心 2022年第21期98-103,共6页 Electronic Measurement Technology
基金 国家自然科学基金(41961065) 广西创新驱动发展专项资金项目(桂科AA18118038) 广西科技基地和人才专项(桂科AD19254002)资助。
关键词 RGB-D图像 图像拼接 三维重建 深度信息 RGB-D image image mosaic 3D reconstruction depth information
  • 相关文献

参考文献11

二级参考文献136

  • 1罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:99
  • 2查宇飞,毕笃彦.基于小波变换的自适应多阈值图像去噪[J].中国图象图形学报(A辑),2005,10(5):567-570. 被引量:50
  • 3李利,马颂德.从二维轮廓线重构三维二次曲面形状[J].计算机学报,1996,19(6):401-408. 被引量:12
  • 4MORAVEC H P. Rover visual obstacle avoidance [ C ]. The seventh International Joint Conference on Artificial Intelligence, Vancouver, British Columbia, 1981 : 785 -790.
  • 5HARRIS C, STEPHENS M. A combined corner and edge detector[ C]. The 4th Alvey Vision Conference, Manches- ter, UK, 1988 : 147-151.
  • 6LOWE D G. Distinctive image features from scale invari- ant key points [ J ]. International Journal of Computer Vi- sion,2004,60 (2) :91-110.
  • 7YAN K, SUKTHANKAR R. PCA-SIb~F:A more distinctive representation for local image descriptors[ C ]. IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition, Washington, USA, 2004 (2): 11/506- I1/513.
  • 8ABDEL-HAKIM A E, FARAG A A. CSIFT: A sift de- scriptor with color invariant characteristics [ C ]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA ,2006 : 1978-1983.
  • 9HERBERT B,ANDREAS E,TUYTELAARS T,et al. SURF: Speeded-Up Robust Features [ J ]. Computer Vision and Im- age Understanding ,2008,110(3) :346-359.
  • 10RACHEL L T, SIEBERT J P. Local feature extraction and matching on range images:2.5D SIFT[ J]. Computer Vi- sion and Image Understanding, 2009, 113 (12): 1235-1250.

共引文献294

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部