期刊文献+

基于RVM-GRNN组合模型的天然气负荷预测研究

Research on Natural Gas Load Forecasting Based on RVM-GRNN Combined Model
下载PDF
导出
摘要 为了提高天然气负荷预测精度,针对不同时间段的天然气负荷周期性及非线性特点,提出一种相关向量机模型(RVM)和广义回归神经网络模型(GRNN)组合的优化模型。采用RVM对天然气负荷数据值数据进行初步建模,并用GRNN对RVM模型的残差进行非线性建模。将RVM模型、GRNN模型及RVM-GRNN组合模型对集中供热和非供热阶段的天然气负荷值分别进行预测,将组合模型分别与单一模型预测结果进行比较,并通过实际案例加以验证。实验结果表明,组合模型预测精度高于单一模型预测精度,在非供热阶段和集中供热阶段,组合模型的MAE、MSE、MAPE均小于单一模型,分别为0.1558、0.0472、0.0416和0.9597、1.6603、0.0279。除与自身单一模型进行比较外,将组合模型预测传统负荷预测模型进行比较,结果显示组合模型预测结果均优于传统预测模型。由此得出,RVMGRNN组合模型能够捕捉天然气负荷值变化规律,满足天然气负荷预测要求,可为天然气输送及管网铺设提供依据。 In order to improve the accuracy of natural gas load forecasting,according to the periodicity and nonlinearity of natural gas load in different time periods,an optimization model based on the combination of correlation vector machine model(RVM)and generalized regression neural network model(GRNN)is proposed in this paper.RVM is used to preliminarily model the natural gas load data,and GRNN is used to nonlinear model the residual of RVM model.The RVM model,the GRNN model and the first mock exam RVM-GRNN model are used to predict the natural gas load values of the central heating and non heating stages respectively.The combined models are compared with the prediction results of the single model respectively.The first mock exam shows that the first mock exam is more accurate than the single model.In the non heating stage and the central heating stage,the combined models MAE,MSE and MAPE are all less than the single model,which are 0.1558,0.0472,0.0416 and 0.9597,1.6603,0.0279 respectively.In addition to comparing the results of the first mock exam with the traditional model,the results of the combination model predict that the combined model is better than the traditional prediction model.Therefore,RVM-GRNN combined model can capture the change law of natural gas load value,meet the requirements of natural gas load prediction,and provide basis for natural gas transmission and pipe network laying.
作者 邵必林 刘通 饶媛 SHAO Bi-lin;LIU Tong;RAO Yuan(School of Management,Xi'an University of Architecture and Technology,Xi'an 710055,China)
出处 《软件导刊》 2023年第1期138-144,共7页 Software Guide
基金 国家自然科学基金项目(62072363)。
关键词 RVM GRNN MAPE 天然气负荷预测 组合模型 RVM GRNN MAPE natural gas load forecasting combined model
  • 相关文献

参考文献3

二级参考文献43

  • 1马晓敏,王新.基于遗传算法的BP神经网络改进[J].云南大学学报(自然科学版),2013,35(S2):34-38. 被引量:15
  • 2毛一之,王秀春,韩鹏.应用绕组测温装置测量变压器绕组温度的必要性和可行性分析[J].变压器,2004,41(9):13-17. 被引量:17
  • 3海瑛,钱苏翔,严拱标.油浸式大型变压器热点温度的动态模型[J].机电工程,2007,24(1):1-3. 被引量:8
  • 4祝翠玲,蒋志方,王强.基于B-P神经网络的环境空气质量预测模型[J].计算机工程与应用,2007,43(22):223-227. 被引量:25
  • 5MATLAB中文论坛.MATLAB神经网络30个案例分析[M].北京:北京航空航天大学出版社,2010:21-35.
  • 6刘军 陈伟根 赵建保.基于光纤光栅传感器的变压器内部温度测量技术.高电压技术,2009,35(3):539-543.
  • 7Lampe W, Pettersson L, Ovren C, et al. Hot-spot measure ments in power transformers[C]// International Conference on Large High Voltage Electric Systems. Paris, France: [s. n. ], 1984.
  • 8McNutt W J, McIver J C, Leibinger G E. Direct measurement of transformer winding hot spot temperature[J]. IEEE Transaction on Power Apparatus and Systems, 1984, 103(6):1155- 1162.
  • 9Pierce L W. An investigation of the thermal performance of an oil filled transformer winding[J]. IEEE Transactions on Power Delivery, 1992, 7(3): 1347-1358.
  • 10Susa D, Lehtonen M, Nordman H. Dynamic thermal modelling of power transformers[J]. IEEE Transactions on Power Delivery, 2005, 20(1): 197-204.

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部