期刊文献+

Lattice expansion enables interstitial doping to achieve a high average ZT in n-type PbS 被引量:1

原文传递
导出
摘要 Lead sulfide(PbS)presents large potential in thermoelectric application due to its earth-abundant S element.However,its inferior average ZT(ZTave)value makes PbS less competitive with its analogs PbTe and PbSe.To promote its thermoelectric performance,this study implements strategies of continuous Se alloying and Cu interstitial doping to synergistically tune thermal and electrical transport properties in n-type PbS.First,the lattice parameter of 5.93Åin PbS is linearly expanded to 6.03Åin PbS_(0.5)Se_(0.5)with increasing Se alloying content.This expanded lattice in Se-alloyed PbS not only intensifies phonon scattering but also facilitates the formation of Cu interstitials.Based on the PbS_(0.6)Se_(0.4)content with the minimal lattice thermal conductivity,Cu interstitials are introduced to improve the electron density,thus boosting the peak power factor,from 3.88μW cm^(−1)K^(−2)in PbS_(0.6)Se_(0.4)to 20.58μW cm^(−1)K^(−2)in PbS0.6Se0.4−1%Cu.Meanwhile,the lattice thermal conductivity in PbS_(0.6)Se_(0.4)−x%Cu(x=0-2)is further suppressed due to the strong strain field caused by Cu interstitials.Finally,with the lowered thermal conductivity and high electrical transport properties,a peak ZT~1.1 and ZTave~0.82 can be achieved in PbS_(0.6)Se_(0.4)−1%Cu at 300–773K,which outperforms previously reported n-type PbS.
出处 《Interdisciplinary Materials》 2023年第1期161-170,共10页 交叉学科材料(英文)
基金 National Science Fund for Distinguished Young Scholars,Grant/Award Number:51925101 National Natural Science Foundation of China,Grant/Award Number:52172236 Fundamental Research Funds for the Central Universities,Grant/Award Number:xtr042021007 Top Young Talents Programme of Xi'an Jiaotong University。
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部