期刊文献+

Molecular ferroelectric/semiconductor interfacial memristors for artificial synapses 被引量:3

原文传递
导出
摘要 With the burgeoning developments in artificial intelligence,hardware implementation of artificial neural network is also gaining pace.In this pursuit,ferroelectric devices(i.e.,tunneling junctions and transistors)with voltage thresholds were recently proposed as suitable candidates.However,their development is hindered by the inherent integration issues of inorganic ferroelectrics,as well as poor properties of conventional organic ferroelectrics.In contrast to the conventional ferroelectric synapses,here we demonstrated a two-terminal ferroelectric synaptic device using a molecular ferroelectric(MF)/semiconductor interface.The interfacial resistance can be tuned via the polarization-controlled blocking effect of the semiconductor,owing to the high ferroelectricity and field amplification effect of the MF.Typical synaptic features including spike timing-dependent plasticity are substantiated.The introduction of the semiconductor also enables the attributes of optoelectronic synapse and in-sensor computing with high image recognition accuracies.Such interfaces may pave the way for the hardware implementation of multifunctional neuromorphic devices.
出处 《npj Flexible Electronics》 SCIE 2022年第1期185-193,共9页 npj-柔性电子(英文)
基金 supported by the Natural Science Foundation of China (Nos.62074040,62074045,61804055) the Natural Science Foundation of Shanghai (Nos.20ZR1404000,19JC1416700).
  • 相关文献

同被引文献9

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部