期刊文献+

Insights into the architecture of human-induced polygenic selection in Duroc pigs 被引量:1

下载PDF
导出
摘要 Background:As one of the most utilized commercial composite boar lines,Duroc pigs have been introduced to China and undergone strongly human-induced selection over the past decades.However,the efficiencies and limitations of previous breeding of Chinese Duroc pigs are largely understudied.The objective of this study was to uncover directional polygenic selection in the Duroc pig genome,and investigate points overlooked in the past breeding process.Results:Here,we utilized the Generation Proxy Selection Mapping(GPSM)on a dataset of 1067 Duroc pigs with 8,766,074 imputed SNPs.GPSM detected a total of 5649 putative SNPs actively under selection in the Chinese Duroc pig population,and the potential functions of the selection regions were mainly related to production,meat and carcass traits.Meanwhile,we observed that the allele frequency of variants related to teat number(NT)relevant traits was also changed,which might be influenced by genes that had pleiotropic effects.First,we identified the direction of selection on NT traits by G,and further pinpointed large-effect genomic regions associated with NT relevant traits by selection signature and GWAS.Combining results of NT relevant traits-specific selection signatures and GWAS,we found three common genome regions,which were overlapped with QTLs related to production,meat and carcass traits besides“teat number”QTLs.This implied that there were some pleiotropic variants underlying NT and economic traits.We further found that rs346331089 has pleiotropic effects on NT and economic traits,e.g.,litter size at weaning(LSW),litter weight at weaning(LWW),days to 100 kg(D100),backfat thickness at 100 kg(B100),and loin muscle area at 100 kg(L100)traits.Conclusions:The selected loci that we identified across methods displayed the past breeding process of Chinese Duroc pigs,and our findings could be used to inform future breeding decision.
出处 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第1期60-71,共12页 畜牧与生物技术杂志(英文版)
基金 financially supported by the National Natural Science Foundation of China (32022078) China Agriculture Research System of MOF and MARA
  • 相关文献

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部