期刊文献+

Hemodynamic Analysis and Diagnosis Based on Multi-Deep Learning Models

下载PDF
导出
摘要 This study employs nine distinct deep learning models to categorize 12,444 blood cell images and automatically extract from them relevant information with an accuracy that is beyond that achievable with traditional techniques.The work is intended to improve current methods for the assessment of human health through measurement of the distribution of four types of blood cells,namely,eosinophils,neutrophils,monocytes,and lymphocytes,known for their relationship with human body damage,inflammatory regions,and organ illnesses,in particular,and with the health of the immune system and other hazards,such as cardiovascular disease or infections,more in general.The results of the experiments show that the deep learning models can automatically extract features from the blood cell images and properly classify them with an accuracy of 98%,97%,and 89%,respectively,with regard to the training,verification,and testing of the corresponding datasets.
出处 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1369-1383,共15页 流体力学与材料加工(英文)
基金 supported by National Natural Science Foundation of China(NSFC)(Nos.61806087,61902158).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部