期刊文献+

基于openFDA对PARP抑制剂不良事件的信号挖掘与分析

Signal Mining and Analysis of Adverse Events of PARP Inhibitors Based on OpenFDA
下载PDF
导出
摘要 目的:挖掘与评价聚腺苷二磷酸核糖聚合酶(PARP)抑制剂的不良事件(ADE)信号,为临床安全合理用药提供参考。方法:通过访问美国食品药品管理局公共数据开放项目(openFDA)数据库药物不良事件端点,检索2004年1月1日~2022年3月31日PARP抑制剂的ADE报告数据,采用报告比值比(ROR)法和英国药品和保健品管理局的综合标准法(以下简称“MHRA法”)进行风险信号挖掘。结果:获得奥拉帕利、尼拉帕利、卢卡帕利和他拉唑帕利的ADE报告分别为8619,13083,7352,672份。4种PARP抑制剂的毒性谱存在一定差异。多数ADE与说明书一致。胃肠道毒性方面,卢卡帕利及尼拉帕利发生恶心、呕吐、消化不良、便秘等信号强度高于奥拉帕利,其中,尼拉帕利发生便秘(ROR=26.77)和肠梗阻(ROR=11.54)的信号强度较高;奥拉帕利和卢卡帕利会引起肠梗阻(ROR=13.84;ROR=6.21)及腹水(ROR=5.71;ROR=5.87),构成比和关联性均较高,但在说明书中未提及;他拉唑帕利在胃肠系统方面较为安全。血液毒性方面,尼拉帕利发生Plt、WBC、RBC降低等信号强度高于其他三者;奥拉帕利发生骨髓增生异常综合征(MDS)(ROR=43.08)和急性髓细胞白血病(AML)(ROR=37.40)的信号强度较高,他拉唑帕利贫血的信号强度最高(ROR=15.96)。此外,尼拉帕利信号强度较高的有失眠(ROR=13.73)、外周神经病变(ROR=18.38)、味觉障碍(ROR=31.23)等。卢卡帕利和奥拉帕利信号强度较高的分别为肾功能损伤(ROR=61.21)和肺炎(ROR=8.79)。结论:临床应用PARP抑制剂时密切监测患者的血常规、肾功能等指标,关注肺炎、肠梗阻、MDS/AML、便秘等ADE信号,进而有效降低临床用药风险。 Objective:To explore and evaluate the safety signals of adverse drug event(ADE)of poly ADP⁃ribose polymerase(PARP)inhibitors,so as to provide reference for clinical safe medication.Methods:The ADE reports of PARP inhibitors from January 1st,2004 to March 31st,2022 were retrieved by visiting the endpoints of the US food and drug ad⁃ministration public data open project(openFDA),and the mined signals were analyzed by reporting odds ratio(ROR)and medicines and health care products regulatory agency(MHRA).Results:A total of 8619 ADE reports of olaparib,13083 ADE reports of niraparib,7352 ADE reports of rucaparib and 672 ADE reports of talazoparib were extracted.The toxicity spectra of four PARP inhibitors showed some differences.Most ADE were in accordance with the instructions.In terms of gastrointestinal toxicity,the risks of nausea,vomiting,dyspepsia,and constipation caused by rucaparib and niraparib were higher than olaparib,among which constipation(ROR=26.77)and intestinal obstruction(ROR=11.54)were the high⁃risk signals for niraparib.Olaparib and rucaparib could cause intestinal obstruction(ROR=13.84;ROR=11.54)and asci⁃tes(ROR=5.71;ROR=9.53),the incidence and correlation was large,but not mentioned in the instruction;talazoparib was safe with respect to the gastrointestinal system.In terms of blood toxicity,niraparib had higher risks of platelet count decreased,white blood cell count decreased and red blood cell count decreased than the other three.Myelodysplastic syn⁃dromes(MDS)(ROR=43.08)and acute myeloid leukemia(AML)(ROR=37.4)were high⁃risk signals for olaparib.Ta⁃lazoparib was at the greatest risk of anemia(ROR=15.96).In addition,insomnia(ROR=13.73),peripheral neuropathy(ROR=18.38),and taste disorder(ROR=31.23)were high signals of niraparib.Renal impairment(ROR=61.21)and pneumonia(ROR=8.79)were high⁃risk signals for rucaparib and olaparib,respectively.Conclusion:The clinical applica⁃tion of PARP inhibitors should be evaluated,especially when the patients have basic diseases such as renal insufficiency,neurological diseases and blood system.Before taking drugs,the patients should be educated,and their blood indexes and kidney functions should be monitored,and pay attention to high⁃risk signals such as pneumonia,intestinal obstruction,MDS/AML,and constipation,effectively,reducing the risk of clinical medication.
作者 丁芸兰 郭子寒 王萌萌 叶璇 翟青 杜琼 Ding Yunlan;Guo Zihan;Wang Mengmeng;Ye Xuan;Zhai Qing;Du Qiong(Department of Pharmacy,Fudan University Shanghai Cancer Center,Shanghai 200032,China;Department of Oncology,Shanghai Medical College,Fudan University)
出处 《药物流行病学杂志》 CAS 2022年第12期815-822,共8页 Chinese Journal of Pharmacoepidemiology
关键词 PARP抑制剂 openFDA 信号挖掘 药品不良事件 Poly ADP⁃ribose polymerase inhibitor OpenFDA Signal mining Adverse drug event
  • 相关文献

参考文献8

二级参考文献77

  • 1顾永军.稳心颗粒治疗心律失常的有效性和安全性分析[J].中国急救医学,2018,38(S02):120-120. 被引量:5
  • 2毛国君.数据挖掘的概念、系统结构和方法[J].计算机工程与设计,2002,23(8):13-17. 被引量:28
  • 3章少华,王大猷,王越,孙骏,李明,徐厚明,钟明康.报告率比例失衡信号检测的实证研究[J].药物流行病学杂志,2006,15(2):77-80. 被引量:20
  • 4陈延,郭剑非,江冬明,詹思延.数据库挖掘和药物不良反应信号的探索与分析(下)[J].药物流行病学杂志,2006,15(2):104-107. 被引量:27
  • 5Gould AL Practical pharmacovigilance analysis strategies[J].Pharmacoepidemiol Drug Saf,2003,12(7):559-574.
  • 6Wilson AM,Thabane L,Holbrook A.Application of data mining techniques in pharmacovigilance[J].Br J Clin Pharmacol,2003,57(2):127-134.
  • 7Bate A,Lindquiat M,Edwards IR,et al.A Bayesian neural network methed for adverse drug reaction signal generation[J].Eur J Clin Pharmacol,1998,54(4):315-321.
  • 8Van Puijenbroek EP,Diemont WL,Grootheest K.Application of quantitative signal detection in the Dutch spontaneous reporting system for adverse drug reactions[J].Drug Saf,2003,26(5):293-301.
  • 9Evans SJW,Waller PC,Davis S.Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports[J].Pharmacoepidemiol Drug Saf,2001,10(6):483-486.
  • 10Van Puijenbroek EP,Bate A,Leufkens HG,et al.A comparison of measures of disproportionality for signal detection in spontaneons reporting systems for adverse drug reactions[J].Pharmacoepidemiol Drug Saf,2002,11(1):3-10.

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部