期刊文献+

超临界法制备PVDF-HFP-PEO共混聚合物电解质及其性能研究

Preparation of PVDF-HFP-PEO blending polymer electrolyte by supercritical method and study on its properties
下载PDF
导出
摘要 针对单一聚合物电解质在室温条件下离子电导率低、电解质与电极界面稳定性差的问题,采用超临界CO_(2)相分离法制备掺杂适当比例聚氧化乙烯(PEO)的聚偏氟乙烯-六氟丙烯(PVDF-HFP)基电解质,并通过共混改性得到多孔PVDF-HFP-PEO聚合物薄膜。结果表明,该聚合物薄膜具有较高孔隙率与吸液率,热分解温度超过380℃,热稳定性较好;吸附电解液后,该电解质离子电导率为5.13 mS/cm。组装成Li//PVDF-HFP-PEO电解质//LiFePO4扣式电池后,1 C倍率循环下正极首圈放电容量达到128.5 mAh/g,循环70圈后,正极放电容量剩余122.8 mAh/g。 Single-polymer based electrolyte has the problems such as low ionic conductivity and poor stability of interface between electrolyte and electrode at room temperature.Polyvinylidene fluoride-hexafluoropropylene(PVDF-HFP) based electrolyte doped with an appropriate proportion of polyethylene oxide(PEO) is prepared through supercritical CO_(2)phase separation method, and blended and modified into porous PVDF-HFP-PEO polymer film.It is verified that this polymer film has high porosity and liquid absorption, and its thermal decomposition temperature exceeds 380℃ and it also exhibits a good thermal stability.After adsorbing the electrolyte solution, the ionic conductivity of the electrolyte is 5.13 mS·cm-1.Li//PVDF-HFP-PEO electrolyte//LiFePO4button battery is assembled, and the first cycle discharge capacity of the positive electrode under 1 C rate reaches 128.5 m·Ah·g-1.The discharge capacity of the positive electrode remains 122.8 m·Ah·g-1after 70 cycles.
作者 薄扩 李志义 魏炜 董超 刘凤霞 刘志军 BO Kuo;LI Zhi-yi;WEI Wei;DONG Chao;LIU Feng-xia;LIU Zhi-jun(R&D Institute of Fluid and Powder Engineering,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,China)
出处 《现代化工》 CAS CSCD 北大核心 2022年第12期229-234,共6页 Modern Chemical Industry
关键词 聚合物电解质 超临界法 PVDF-HFP-PEO 高离子电导率 高安全性 polymer electrolyte supercritical method PVDF-HFP-PEO high ionic conductivity high security
  • 相关文献

参考文献10

二级参考文献40

  • 1余碧涛,李福燊,仇卫华.锂电池离子液体电解质的研究进展[J].化工进展,2004,23(11):1195-1198. 被引量:7
  • 2唐致远,管道安,张娜,邓艳波.锂离子动力电池的安全性研究进展[J].化工进展,2005,24(10):1098-1102. 被引量:25
  • 3唐致远,陈玉红,卢星河,谭才渊.锂离子电池安全性的研究[J].电池,2006,36(1):74-76. 被引量:55
  • 4邱亚丽,王保峰,杨立.LiFePO_4纳米粉体的还原插锂合成及其电化学性能研究[J].无机材料学报,2007,22(1):79-83. 被引量:2
  • 5Zhang D, Cai R , Zhou Y K, et al. Effect of milling method and time on the properties and electrochemical performance of LiFePO4/C composites prepared by ball milling and thermal treatment [J]. ElectrochiraicaActa, 2010, 55 (8): 2653-2661.
  • 6Zhang S S, Xu K, Jow T R. An improved electrolyte for the LiFePO4 cathode working in a wide temperature range [J]. Journal of Power Sources, 2006, 159 (1): 702-707.
  • 7Liao X Z, Ma Z F, Gong Q, et al. Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte [J]. Electrochemistry Communications, 2008, 10 (5): 691-694.
  • 8Liao X Z, He Y S, Ma Z F, et al. Effects of fluorine-substitution on the electrochemical behavior of LiFePO4/C cathode materials [J]. Journal of Power Sources, 2007, 174 (2): 720-725.
  • 9Wang Y F, Zhang D, Yu X, et al. Mechanoactivation-assisted synthesis and electrochemical characterization of manganese lightly doped LiFePO4 [J]. Journal of Alloys and Compounds, 2010, 492 ( 1-2): 675-680.
  • 10Yang Y, Liao X Z, Ma Z F, performance of LiFePO4/C-PPy Electrochemistry Communications, et al. Superior high-rate cycling composite at 55 ℃ [J]. 2009, 11 (6): 1277-1280.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部