摘要
随着锂离子电池在储能系统中比例迅速增大,为避免因电池性能退化导致的事故,如何准确预测锂离子电池剩余使用寿命就成为保障储能系统可靠运行的关键。针对锂离子电池剩余使用寿命预测的问题,提出一种改进灰狼优化多核极限学习机(IGWO-MKELM)预测方法。首先从电池充放电过程中提取能够表征电池寿命退化的间接健康因子作为输入量,然后采用改进灰狼算法对多核极限学习机参数进行寻优,建立改进灰狼优化多核极限学习机预测方法,最后使用NASA电池数据集进行仿真实验。结果表明,IGWO-MKELM方法可以更加精确地预测锂离子电池剩余寿命。
With the rapid increase of the proportion of lithium-ion batteries in energy storage systems,in order to avoid accidents caused by the degradation of battery performance,how to accurately predict the remaining useful life(RUL)of lithium-ion batteries has become the key to ensuring the reliable operation of energy storage systems.Aimed at the RUL prediction,a predictive method based on improved grey wolf optimization multiple kernel extreme learning machine(IGWO-MKELM)is proposed.First,the indirect health factors that can characterize the degradation of battery life are extracted from the charging and discharging process and used as the input.Then,the IGWO algorithm is used to optimize the parameters of MKELM,and the predictive method based on IGWO-MKELM is established.Finally,a simulation experiment is carried out on the NASA batteries dataset,and results show that the IGWO-MKELM method can more accurately predict the RUL of lithium-ion batteries.
作者
宋健正
刘洋
崔来熙
张梦迪
SONG Jianzheng;LIU Yang;CUI Laixi;ZHANG Mengdi(School of Electrical and Electronic Engineering,Shandong University of Technology,Zibo 255000,China)
出处
《电源学报》
CSCD
北大核心
2023年第1期168-176,共9页
Journal of Power Supply
基金
国家重点研发计划资助项目(2017YFB0902800)
山东省研究生教育教学改革研究项目(SDYJG19103)
国家电网有限公司科技项目(52094017003D)。
关键词
锂离子电池
剩余使用寿命
间接健康因子
改进灰狼优化算法
多核极限学习机
lithium-ion battery
remaining useful life(RUL)
indirect health factors
improved grey wolf optimization(IGWO)algorithm
multiple kernel extreme learning machine(MKELM)