期刊文献+

计及灵活性供需的多场景分布式电源双层规划 被引量:2

A Bi-level Programming of Multi Scenario Distributed Generation Considering Flexible Supply and Demand
下载PDF
导出
摘要 高渗透率可再生能源并网对电力系统提出了更高的灵活性要求;在可再生能源系统规划阶段计及多种灵活性资源协同优化可有效提升系统灵活性,为此,基于灵活性调节能力分析,提出计及灵活性的配电网分布式电源双层规划模型,将经济目标和灵活性目标作为优化目标,构建了多场景协调优化规划模型;考虑到风光场景集过大所带来求解效率较低的问题,在仿射传播(affinity propagation,AP)聚类算法的基础上提出一种基于AP-Kmedoids的双层场景缩减技术,并对缩减后的场景进行校验。最后通过算例采用整数自适应粒子群算法(adaptiveparticleswarm optimization,APSO)-混沌粒子群算法(chaos particle swarm optimization,CPSO)混合求解策略对双层规划模型进行仿真,结果验证了所提规划方法在提升经济性和灵活调节能力方面的有效性。 The grid-connection of high penetration renewable energy makes a higher request on the flexibility of power grid.During the planning stage of renewable energy system taking collaborative optimization of multiple flexible resources into consideration can effectively improve the system flexibility.For this reason, based on the analysis on flexible regulating ability, considering flexibility a bi-level planning model of distributed generation in distribution network was proposed. Taking economic goals and flexible goals as optimization objectives, a multi scenario coordinated optimization planning model was constructed. Considering the defect of low solution efficiency due to too large scenery scene set, on the basis of affinity propagation(abbr. AP) clustering algorithm an APKmedoids-based bi-level scene reduction technology was put forward, and the reduced scene was verified. Finally, by use of the mixed solution strategy of integer adaptive particle swarm optimization(abbr. APSO) and chaos particle swarm optimization(abbr. CPSO) the simulation of the proposed bi-level programming model was implemented. Simulation results show that the proposed programming method is effective in improving economy and flexible regulation ability.
作者 郭然龙 邢海军 谢宝江 秦建 罗扬帆 娄伟明 程浩忠 GUO Ranlong;XING Haijun;XIE Baojiang;QIN Jian;LUO Yangfan;LOU Weiming;CHENG Haozhong(College of Electrical Engineering,Shanghai University of Electric Power,Yangpu District,Shanghai 200090,China;Taizhou Power Supply Company of State Grid Zhejiang Electric Power Co.,Ltd,Taizhou 318000,Zhejiang Province,China;Key Laboratory of Control of Power Transmission and Conversion(SJTU),Ministry of Education,Minhang District,Shanghai 200240,China)
出处 《现代电力》 北大核心 2023年第1期8-17,共10页 Modern Electric Power
基金 国家重点研发计划项目(2017YFB0903400) 电力传输与功率变换控制教育部重点实验室开放课题资助(2018AA01) 国网浙江省电力有限公司科技项目(5211TZ1900S7)。
关键词 可再生能源 灵活性资源 供需能力 分布式电源 场景缩减 renewable energy flexible resources supply and demand capacity distributed generation scenario reduction
  • 相关文献

参考文献16

二级参考文献176

共引文献704

同被引文献31

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部