摘要
电弧熔丝增材随动锤击精整-消应力过程对增材装置整体结构变形存在一定的影响,为保证增材设备的使用精度,分析了不同锤击气压、锤击位置对设备结构变形的影响。解析计算出锤击气压与锤击速度的关系,建立了大型电弧增材设备框梁结构承载有限元分析模型,分析、确立了锤击过程中横梁受到的锤击反力,并根据工作位置、锤击气压的不同设计了15种工况,对各工况进行了瞬态动力学分析。分析结果显示,在各锤击气压下,锤击对横梁重力方向的变形影响最大,最大变形区域出现在横梁中央部位。该研究为设备后续的优化提供了依据,具有一定的工程应用价值。
The wire-arc additive follow-up hammering finishing-stress relief process has a crucial influence on the overall structural deformation of additive device.Therefore,in order to ensure the use accuracy of additive device,the influences of different hammering air pressures and hammering positions on the deformation of device structure were analyzed.Then,the relationship between hammering air pressure and hammering velocity was calculated analytically,and the finite element analysis model for the bearing capacity of frame-beam structure for large wire-arc additive device was established to analyze and determine the hammering reaction force on the beam during the hammering process.Furthermore,based on the different working positions and hammering air pressures,fifteen working conditions were designed,and the transient dynamic analysis was carried out for each working condition.The analysis results show that under each hammering air pressure,the impact of hammering on the deformation of beam along the gravity direction is the greatest,and the largest deformation region appears in the center of beam.Thus,the research provides a basis for the subsequent optimization of device and has certain engineering application value.
作者
蒋立鹤
刘仁培
蒋倩
Jiang Lihe;Liu Renpei;Jiang Qian(College of Materials Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Jiangsu Engineering Research Center for Advanced Manufacturing of Ship Power System Components,Nanjing 211121,China;COSCO SHIPPING Marine Equipment&Spares(Nanjing)Co.,Ltd.,Nanjing 211121,China)
出处
《锻压技术》
CAS
CSCD
北大核心
2022年第12期109-114,121,共7页
Forging & Stamping Technology
基金
江苏省工程技术研究中心项目(BM2021214)。
关键词
电弧熔丝增材制造
随动锤击
锤击气压
梁结构
瞬态动力学
wire-arc additive manufacture
follow-up hammering
hammering pressure
beam structure
transient dynamics