期刊文献+

核电阀门用不锈钢热变形行为研究及应用

Research and application on thermal deformation behavior for stainless steel of nuclear power valve
原文传递
导出
摘要 针对大型特厚F316H不锈钢阀门锻件易出现粗晶、混晶和探伤无底波等难题,对其高温下的流变行为进行了研究,以探索最佳的热加工变形工艺参数来指导实际生产应用。采用Gleeble-1500D热模拟试验机,在应变速率为0.001~1 s^(-1)、变形温度为950~1250℃条件下开展了热压缩变形试验。基于Arrhenius模型,建立了高温流变应力本构方程,并计算得到热变形激活能为393.857 kJ·mol^(-1)。基于DMM动态材料模型,建立了应变量为0.8的热加工图,在变形温度为1100~1150℃、应变速率为0.005~0.01 s^(-1)时,功率耗散因子达到峰值,结合微观金相分析,该变形条件下晶粒发生了充分的动态再结晶,可作为热加工的主加工区域。结合热加工图,设计了核电不锈钢阀体锻件(规格为12寸)的锻造工艺,并经生产验证得到了晶粒度、无损探伤和力学性能优异的锻件。 For the problems that coarse grains,mixed grains and without bottom wave in detection of large extra-thick F316H stainless steel valve forgings,the thermal rheological behavior at high temperature was studied to explore the best thermal working process parameters so as to guide practical production and application,and the thermal compression deformation tests were carried out by the thermal simulation tester Gleeble-1500D under the conditions of the strain rates of 0.001^(-1) s^(-1) and the deformation temperatures of 950-1250℃.Then,the constitutive equation of high temperature rheological stress was established based on the Arrhenius model,and the thermal deformation activation energy was calculated to be 393.857 kJ·mol^(-1).Furthermore,the thermal processing map with the strain of 0.8 was established based on the DMM dynamic material model,and when the deformation temperature was 1100-1150℃and the strain rate was 0.005-0.01 s^(-1),the power dissipation factor reached the peak value.Combined with microscopic metallographic analysis,the grains within this range underwent sufficient dynamic recrystallization,which could be used as the main processing area of thermal working.Finally,combined with the thermal processing map,the forging process of nuclear power stainless steel valve body forgings(12 inches in size)was designed,and the forgings with excellent grain size,non-destructive flaw detection and mechanical properties could be obtained through the production verification.
作者 王行 王爱琴 李昌义 谢敬佩 禹兴胜 宋玉冰 Wang Hang;Wang Aiqin;Li Changyi;Xie Jingpei;Yu Xingsheng;Song Yubing(Shool of Materials Science and Engineering,Henan University of Science and Technology,Luoyang 471023,China;Luoyang CITIC HIC Casting&Forging Co.,Ltd.,Luoyang 471039,China;CITIC Heavy Industries Co.,Ltd.,Luoyang 471039,China)
出处 《锻压技术》 CAS CSCD 北大核心 2022年第12期221-226,共6页 Forging & Stamping Technology
基金 洛阳市科技重大专项(2101005A)。
关键词 F316H不锈钢 高温流变应力 本构模型 热加工图 动态再结晶 F316H stainless steel high temperature rheological stress constitutive model thermal processing map dynamic recrystallization
  • 相关文献

参考文献6

二级参考文献74

  • 1黄明亚,张宗列,张继伟.百万千瓦核电站阀门国产化探讨[J].通用机械,2006(9):34-38. 被引量:5
  • 2国家发展和改革委员会.核电中长期发展规划(2005-2020年)[R].2007.
  • 3LU Shi-ying , ZHANG Ting-kai , YANG Chang-qiang , et a1. Stainless Steel [M]. Beijing: Atomic Energy Press. 1995 (in Chinese).
  • 4Uggowitzer P J. Magdowski R. Speidel M O. Nickel Free High Nitrogen Austenitic Steels [n. IS1]Int. 1996.36(7): 901.
  • 5Newman R C. Shahrabi T. The Effect of Alloyed Nitrogen or Dissolved Nitrate Ions on the Anodic Behaviour of Austenitic Stainless Steel in Hydrochloric Acid [n. Corros Sci. 1987. 27 (8): 827.
  • 6Sadough- Vanini A. Audouard J P. Marcus P. The Role of Nitrogen in the Passivity of Austenitic Stainless Steels [J]. Corros Sci. 1994.36(11): 1825.
  • 7Olefjord I. Wegrelius L. The Influence of Nitrogen on the Passivation of Stainless Steels [n. Corros Sci. 1996. 38(7): 1203.
  • 8Iargelius-Pettersson R F A. Electrochemical Investigation of the influence of Nitrogen Alloying on Pitting Corrosion of Austenitic Stainless Steels [J]. Corros Sci. 1999.41(8): 1639.
  • 9Cho S H. Yoo Y C. Hot Rolling Simulations of Austenitic Stainless Steel [J]. J Mater Sci. 2001. 36(7): 4267.
  • 10Ebrahimi G R. Keshmiri H. Momeni A. et al. Dynamic Recrystallization Behavior of a Superaustenitic Stainless Steel Containing 16% Cr and 25% Ni [J]. Mater Sci Eng. 2011. 528A(25): 7488.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部