期刊文献+

一种面向动态3D场景的激光雷达SLAM算法 被引量:2

A Lidar SLAM Algorithm for Dynamic 3D Scenes
下载PDF
导出
摘要 如何滤除移动物体对实时建图的干扰是SLAM在复杂动态环境中需要解决的关键问题之一。论文提出一种新的面向动态3D场景的激光雷达SLAM算法。论文算法首先提取特征点,通过配准出估计机器人的位姿,然后设计了一种移动物体的滤除方法,通过使用卡尔曼目标跟踪算法滤除移动物体,最终构建出环境的静态地图。通过在真实场景中的移动机器人上实验表明,该方法提高了SLAM系统在动态环境中构建静态地图的鲁棒性,满足实时性要求,具有较好的实际使用价值。 How to filter out the interference of moving objects on real-time mapping is one of the key problems that SLAM needs to solve in a complex dynamic environment.A new lidar SLAM algorithm for dynamic 3D scenes is proposed.The algorithm first extracts feature points and registrates to estimate the pose of the robot,and then designs a method to filter moving objects which remove moving objects with the Kalman target tracking algorithm,and finally builds a static environment map.Experiments on mobile robot in real scenes show that this method improves the robustness of the SLAM system in building static maps in dynamic environments,meets real-time requirements,and has good practical value.
作者 唐印 TANG Yin(School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094)
出处 《计算机与数字工程》 2022年第11期2449-2453,共5页 Computer & Digital Engineering
关键词 激光雷达 SLAM 移动物体滤除 目标跟踪 lidar SLAM moving objects filtering objects tracking
  • 相关文献

参考文献1

二级参考文献14

  • 1Ferguson D, Darms M, Urmson C, et al. Detection, predic- tion, and avoidance of dynamic obstacles in urban environ- ments[C]//IEEE Intelligent Vehicles Symposium. Piscataway, USA: IEEE, 2008:1149-1154.
  • 2Sun Z H, Bebis G, Miller R. On-road vehicle detection: A re- view[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(5): 694-711.
  • 3Tzomakas C, yon Seelen W. Vehicle detection in traffic scenes using shadows[R]. Bochum, Germany: Institut fur Neuroinfor- matik, Ruhr University, 1998.
  • 4Gandhi T, Trivedi M M. Pedestrian protection systems: Is- sues, survey, and challenges[J]. IEEE Transactions on Intelli- gent Transportation Systems, 2007, 8(3): 413-430.
  • 5Vu T D, Burlet J, Aycard O. Grid-based localization and local mapping with moving object detection and tracking[J]. Infor- mation Fusion, 2011, 12(1): 58-69.
  • 6Darms M S, Rybski P E, Baker C, et al. Obstacle detection and tracking for the urban challenge[J]. IEEE Transactions on Intel- ligent Transportation Systems, 2009, 10(3): 475-485.
  • 7Urmson C, Anhalt J, Bagnell D, et al. Autonomous driving in urban environments: Boss and the Urban Challenge[J]. Journal of Field Robotics, 2008, 25(8): 425-466.
  • 8Montemerlo M, Becker J, Bhat S, et al. Junior: The Stanford en- try in the Urban Challenge[J]. Journal of Field Robotics, 2008, 25(9): 569-597.
  • 9MacLachlan R, Mertz C. Tracking of moving objects from a moving vehicle using a scanning laser rangefinder[C]//IEEE Intelligent Transportation Systems. Piscataway, USA: IEEE, 2006: 301-306.
  • 10Fuerstenberg K C, Dietmayer K C J, Eisenlauer S, et al. Multi- layer laserscanner for robust object tracking and classification in urban traffic scenes[C]//9th World Congress on Intelligent Transport Systems. 2002.

共引文献35

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部