期刊文献+

融合HOG与PCA算法的人脸识别 被引量:2

Face Recognition Based on HOG Feature and PCA Algorithm
下载PDF
导出
摘要 为了进一步研究人脸识别问题文章融合HOG特征与PCA算法对人脸进行识别研究。首先计算人脸图像的方向梯度直方图(HOG),将输出的每一个特征向量纵向堆叠为一个二维矩阵。然后使用主成分分析(PCA)进行特征降维,减少特征间的相关性和噪声。最后使用支持向量机(SVM)进行分类识别。整个算法模型在ORL人脸数据库中进行实验,最终结果显示识别准确率为96.0%;使用ROC曲线评价该方法的优劣得到曲线下的面积为0.9898。 In order to solve the problem of face recognition,this paper proposes a face recognition method that combines HOG feature and PCA algorithm.Firstly,the directional gradient histogram(HOG)of face images in the database is calculated,and each output eigenvector is stacked into a two-dimensional matrix.Then,principal component analysis(PCA)is used to reduce the dimension of features and reduce the correlation and noise between features.Finally,support vector machine(SVM)is used for classification and recognition.The whole algorithm model is tested in ORL face database,and the final result shows that the recognition accuracy is 96.0%.The ROC curve is used to evaluate the advantages and disadvantages of this method.The area under the curve is 0.9898.
作者 徐岩 徐竟泽 曾建行 吴作宏 高照 XU Yan;XU Jingze;ZENG Jianhang;WU Zuohong;GAO Zhao(College of Electronic Information Engineering,Shandong University of Science&Technology,Qingdao 266590)
出处 《计算机与数字工程》 2022年第11期2544-2547,共4页 Computer & Digital Engineering
基金 国家自然科学基金项目(编号:11547037,11604181) 山东省研究生教育创新计划项目(编号:01040105305) 海信(山东)冰箱有限公司研发中心课题资助。
关键词 人脸识别 方向梯度直方图(HOG) 主成分分析(PCA) 支持向量机(SVM) face recognition directional gradient histogram(HOG) principal component analysis(PCA) support vector machine(SVM)
  • 相关文献

参考文献3

二级参考文献31

  • 1魏新,冯兴杰,刘山.基于支持向量机的多元文本分类研究[J].海军工程大学学报,2004,16(5):30-32. 被引量:13
  • 2何国辉,甘俊英.PCA类内平均脸法在人脸识别中的应用研究[J].计算机应用研究,2006,23(3):165-166. 被引量:29
  • 3边肇琪,张学工,等.模式识别[M].第二版.北京:清华大学出版社,2000.
  • 4Cristianini N, Taylor J S. An introduction to support vector machine[M]. Camridge: Cambridge University Press, 2000.
  • 5M. Turk, A. Pentland. Eigenfaces for reongnition[J]. Journal of Cognitive Neuroscience, 1991(3) : 71-76.
  • 6Guoqi Cui, Wen Gao, Feng Jiao, et al. Face Recogni-tion Based on Support Vector Method[R]. The 5th A-sian Conference on Computer Vision, Melbourne, Australia, 23-25 January, 2002.
  • 7Guo G, LI S Z, CHAN K. Face recognition by sup-port vector machine[C]//IEEE International Cpnfer-ence on Automatic Face and Gesture Recognition. New York:IEEE, 2000 : 196-201.
  • 8ZHAO W, Krishanaswamy A, Chellappa R, et al. Discriminant analysis of principal components for face recognition[C]//3rd IEEE International Conference on Automatic Face and Gesture Recognition. Washing-ton, DC: IEEE Computer Socitey, 1998: 336-341.
  • 9Bartlett MS,Movellan JR,Sejnowski TJ.Face recognition by independent component analysisIEEE Transactions on Neural Networks,2002.
  • 10Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis,1999(03).

共引文献84

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部