摘要
针对现有视线法路径跟踪控制器在工程应用中存在的航速自适应能力差、参数不易整定以及抗干扰能力差等问题,本文提出了基于前视角的水面无人艇自适应路径跟踪控制器。在传统视线法制导中的前视角,结合跟踪偏差状态以及Sigmoid函数提出了欠驱动无人艇的自适应前视角制导模型。在此基础上,基于最小参数学习的径向基神经网络和动态面控制技术设计了自适应航速航向跟踪控制器。基于Lyapunov稳定性理论,所设计的控制器可保证所有误差动态的一致最终有界。外场试验表明:在实际海洋干扰情况下,本文提出的控制算法具有良好的控制性能以及鲁棒性。
To solve the problems in common line-of-sight-based path-tracking controllers,including poor speed adaptability,difficult parameter tuning process,and poor anti-interference ability,this paper presents a novel adaptive path tracking control scheme of underactuated surface vessels based on the frontal point of view.First,based on the frontal point of view in traditional line-of-sight based guidance,an adaptive guidance model is introduced using the combination of the tracking deviation state and the Sigmoid function.Next,an adaptive tracking controller of the vessel speed and heading is designed based on the radial neural network and the dynamic surface control technology of minimum parameter learning.Based on the Lyapunov stability theory,the designed controller can guarantee that all tracking errors are uniform and finally bounded.The results of the outfield experiments demonstrate good performance and high robustness of the proposed control scheme under the effect of ocean disturbances.
作者
周彬
黄兵
毛磊
王巍凯
苏玉民
ZHOU Bin;HUANG Bing;MAO Lei;WANG Weikai;SU Yumin(Science and Technology on Underwater Vehicle Laboratory,Harbin Engineering University,Harbin 150001,China)
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2023年第1期73-80,共8页
Journal of Harbin Engineering University
基金
国家重点研发计划项目(2021YFC2803400)
中国博士后科学基金项目(2020M681081)
黑龙江省博士后基金项目(LBH-Z20130)
国家自然科学基金项目(52071100)。
关键词
水面无人艇
路径跟踪控制
视线法
径向基神经网络
动态面控制
自适应控制
智能控制
速度控制
航向控制
unmanned surface vessel
path follow control
line of sight
radial neural network
dynamic surface control
adaptive control
intelligent control
speed control
yaw control