期刊文献+

分块压缩学习剪枝算法

Chunked Compression Learning Algorithm
下载PDF
导出
摘要 为压缩网络剪枝过程中较大的搜索空间,从预训练深度神经网络中找到最佳的稀疏网络结构,本文提出一种基于遗传算法和知识蒸馏的分块压缩学习算法(CCLA).首先,在预定义压缩空间中将学生网络初始化为一个稀疏网络结构.然后,将教师网络和学生网络按层划分多个块网络,在教师网络的监督下对学生网络进行逐块压缩.最后,使用遗传算法搜索学生网络中每个块网络的稀疏结构.在CIFAR-10数据集上对VGG-16网络和ResNet-110网络的实验结果表明,本文所提方法性能表现良好,例如,在CIFAR-10数据集上对VGG-16进行压缩,可压缩掉87.82%的参数和70.4%的浮点运算(Floating Point of operations,FLOPs),而精度损失仅为0.37%. To reduce the large search space in the network pruning process,and find the optimal sparse structure from a baseline network,this paper proposes a chunked compression learning algorithm(CCLA)based on genetic algorithm and knowledge distillation.First,the student network is initialized to a sparse network structure in the predefined compression space.Then,the teacher and student networks are divided into multiple blocks,and block-wise compression of the student network is conducted under the supervision of the teacher network.Finally,a genetic algorithm is used to find sparse structure of each block in student network.Experimental results of pruning VGG-16 and ResNet-110 networks on the CIFAR-10 dataset show that the proposed method performs well.For instance,compressing of VGG-16 on the CIFAR-10 dataset,pruned 87.82%of the parameters and 70.4%of the Floating Point of Operations(FLOPs)with only 0.37%accuracy loss.
作者 刘会东 余振华 杜方 宋丽娟 LIU Hui-dong;YU Zhen-hua;DU Fang;SONG Li-juan(School of Information Engineering,Ningxia University,Yinchuan 750021,China;Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence co-founded by Ningxia Municipality and Ministry of Education,Yinchuan 750021,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2023年第2期269-274,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61901238,62062058)资助 宁夏大学研究生创新基金项目(GIP2020088)资助.
关键词 网络剪枝 网络架构搜索 遗传算法 知识蒸馏 network pruning network architecture search genetic algorithm knowledge distillation
  • 相关文献

参考文献2

二级参考文献4

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部