摘要
To improve the coercivity and temperature stability of Nd-Fe-B sintered magnets for high-temperature applications,the eutectic Tb_(80)Fe_(20)(wt%)alloy powders were added into the Nd-Fe-B sintered magnets by intergranular method to enhance the coercivity(H_(cj))and thermal stability.The micro structure,magnetic properties and thermal stability of the Nd-Fe-B magnets with different Tb_(80)Fe_(20)contents were studied.The experimental results demonstrate that the coercivity(H_(cj))of the sintered Nd-Fe-B magnet is significantly enhanced from 14.12 to 27.78 kOe,and the remanence(Br)decreases not obviously by introducing 4 wt%Tb_(80)Fe_(20)alloy.Meanwhile,the reversible tempe rature coefficients of coercivity(β)and remanence(α)of the Nd-Fe-B magnets are increased from-0.5634%/℃to-0.4506%/℃and-0.1276%/℃to-0.1199%/℃at 20-170℃,respectively.The Curie temperature(TC)of the Nd-Fe-B magnet is slightly enhanced with the increase of Tb_(80)Fe_(20)content.Moreover,the irreversible flux magnetic loss(hirr)is obviously reduced as Tb80Fe20addition increases.Further analysis of the microstructure reveals that a modified microstructure,i.e.clear and continuous RE-rich grain boundary layer,is acquired in the sintered magnets by introducing Tb_(80)Fe_(20)alloy.The associated mechanisms on improved coercivity and thermal stability were comprehensively researched.
基金
Project partly supported by the Natural Science Foundation of Shanxi Province,China(201801D121100)
the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi(OIT)
the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(STIP)(201802033)。