期刊文献+

基于机器学习的储层渗透率预测方法 被引量:2

Machine learning to predict reservoir permeability
下载PDF
导出
摘要 目前在渗透率评价中存在一定困难,主要原因是储层的纵横向非均质性和储层的孔隙结构的巨大差异导致在相同孔隙度条件下,渗透率跨度可能达到一个数量级以上,传统的测井渗透率计算方法难以达到储层精细评价的要求。本文在充分调研渗透率影响因素的前提下,优选了机器学习算法预测渗透率,提高了渗透率的预测精度。 At present,there are some difficulties in permeability evaluation. The main reason is that the permeability span may reach more than one order of magnitude under the same porosity condition due to the heterogeneity of the vertical and horizontal direction of the reservoir and the huge difference in the pore structure of the reservoir. The traditional logging permeability calculation method is difficult to meet the requirements of the fine evaluation of the reservoir. On the premise of fully investigating the influencing factors of permeability,this paper selects the machine learning algorithm to predict permeability and improves the prediction accuracy of permeability.
作者 何玉春 He Yuchun(CNOOC(China)Company Limited Shanghai Branch,Shanghai 200000)
出处 《石化技术》 CAS 2022年第12期182-184,共3页 Petrochemical Industry Technology
关键词 测井 渗透率 机器学习 神经网络 Well logging Permeability Machine learning Neural network
  • 相关文献

参考文献5

二级参考文献61

共引文献46

同被引文献44

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部