摘要
点云分割作为识别地理场景的空间特征、探索和记录空间信息的关键处理步骤,其分割精度直接影响后续三维场景重建、地物特征提取等应用的效果。针对传统区域生长点云分割算法的不稳定等问题,本文结合超体素和区域生长算法对点云数据进行分割,并利用点云自身的色彩信息进一步改进分割结果。试验结果表明,相较于传统的区域生长和已有的结合超体素与区域生长的分割算法,本文算法对点云数据分割的效果更好,且其精确率与召回率均有提高。
Point cloud segmentation is a key processing step for identifying spatial features of geographic scenes,exploring and recording spatial information,and its segmentation accuracy directly affects the effects of subsequent 3 D scene reconstruction and feature extraction.Aiming at the instability of traditional region-growing point cloud segmentation algorithms,this paper combines supervoxels and region-growing algorithms to segment point cloud data,and uses the color information of the point cloud itself to further improve the segmentation results.The experimental results show that compared to the traditional region growing and existing segmentation algorithms,combining supervoxels and region growing algorithm proposed in this paper has better effect on point cloud data segmentation,and its accuracy and recall rates are both improved.
作者
韩英
郑文武
赵莎
唐欲然
HAN Ying;ZHENG Wenwu;ZHAO Sha;TANG Yuran(Hengyang Normal University,Hengyang 421002,China)
出处
《测绘通报》
CSCD
北大核心
2022年第12期126-130,共5页
Bulletin of Surveying and Mapping
基金
湖南省研究生科研创新项目(CX20190985)
传统村镇文化数字化保护与创意利用技术国家地方联合工程实验室开放基金项目(CTCZ19K02)
湖南省社会科学规划项目(17ZDB052)
湖南省研究生科研创新项目(CX20190981)
湖南省研究生科研创新项目(CX20211255)。
关键词
超体素
区域生长
色彩信息
点云分割
supervoxel
region growth
color information
point cloud segmentation