期刊文献+

DWA算法和VO混合路径规划算法对比研究 被引量:3

Comparative Study of DWA Algorithm and VO Hybrid Path Algorithm
下载PDF
导出
摘要 为解决传统移动机器人在局部路径规划中的避障问题,针对传统DWA(Dynamic Window Approach)算法的移动机器人避障时间过长以及在密集动态障碍物区中无法选择最佳路径的缺点,提出了A^(*)算法结合VO(Velocity Obstacle)算法的VO混合路径规划算法,对移动机器人避障算法进行优化。基于ROS(Robot Operating System)机器人操作系统,在具有3种障碍物的情况下,采用模块化的软件架构,通过设计DWA算法与VO混合路径规划算法的对照研究实验,检验VO混合路径规划算法的避障效果。多种环境下的仿真实验结果表明,在动态障碍物多、障碍物移动速度快以及雷达扫描频率低的情况下,使用VO混合路径规划算法,避障效果有明显改善。 The traditional mobile robot based on DWA(Dynamic window Approach) algorithm exists the following deficiencies: longer obstacle avoidance time and the inability to optimize the local path planning in obstacle-intensive dynamic zone. Aimed at the problems mentioned above, a hybrid path algorithm combined A^(*)algorithm with VO(Velocity Obstacle) is proposed to optimize the velocity of obstacle avoidance for mobile robots. Via the comparative experiment combined the DWA algorithm with the VO hybrid path algorithm in the case of three obstacles, the ROS(Robot Operating System) adopted the modular software design is put into practice to test the obstacle avoidance effect of the hybrid path planning algorithm. The results of simulation experiment in multiple environments clearly indicate that the obstacle avoidance effect will be significantly improved via the VO hybrid path algorithm in the scenarios scattered with multiple dynamic obstacles, and it has high speed of the obstacle movement and low frequency of radar scanning.
作者 陈劲宇 王坤 王硕 樊世杰 麻琦昌 李冬梅 王红波 CHEN Jinyu;WANG Kun;WANG Shuo;FAN Shijie;MA Qichang;LI Dongmei;WANG Hongbo(College of Electronic Science and Engineering,Jilin University,Changchun 130012,China;Fintech Department,Jilin Branch,INDUSTRIAL and Commercial Bank of China,Changchun 130061,China)
出处 《吉林大学学报(信息科学版)》 CAS 2022年第6期1067-1075,共9页 Journal of Jilin University(Information Science Edition)
基金 吉林大学大学生创新训练基金资助项目(202110183183)。
关键词 速度障碍法(VO) 局部避障规划 动态窗口法(DWA) 避障 A^(*)算法 velocity obstacle(VO) local obstacle avoidance planning dynamic window approach(DWA) avoidance A^(*)algorithm
  • 相关文献

参考文献5

二级参考文献36

共引文献101

同被引文献15

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部