摘要
A novel implementation of negative stiffness elements(NSEs)is proposed,utilizing industrial grade nitrogen gas springs as pre-stressed stiffness elements in a configuration with lever arms.This NSE is combined with an inerter to form a stiff dynamic absorber(SDA)for vertical seismic protection of structures with base isolation.The SDA is optimized to minimize vertical accelerations while ensuring static structural integrity,excellent damping performance and containment of relative displacements.The introduction of gas springs in place of conventional linear springs addresses important practical limitations through features of non-linearity and industrial grade manufacturing.The proposed implementation is dimensioned for a 50-ton structure and evaluated numerically for 25 actual earthquake records,in comparison with a linear SDA model and an equivalent conventional damper(CD).Individual and averaged results of acceleration and displacement time histories demonstrate vastly superior response compared to CD regarding induced accelerations for similar displacements.Performance equivalency with the linear SDA model indicates the stability of the gas spring implementation while guaranteeing predictability,tested endurance,proper tolerances,and off-axis motion resistance without requiring additional guiding components,as opposed to conventional springs.These features render the proposed implementation a promising solution for the realization of NSEs in seismic protection.
基金
European Union′s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant No.INSPIRE-813424(“INSPIRE-Innovative Ground Interface Concepts for Structure Protection”)。