期刊文献+

基于改进YOLOv5的路面缺陷检测算法研究 被引量:1

下载PDF
导出
摘要 针对传统的路面缺陷检测算法,路面缺陷特征提取单一,且依赖于人工提取,导致检测效率低下的问题,提出了一种基于改进YOLOv5的路面缺陷检测算法。针对原算法对路面缺陷的位置信息提取不充分,引入CBAM注意力机制并对空间注意力中的7*7卷积层替换为3个串行5*5卷积后使用1*1卷积融合3个不同感受野下的特征信息,增强提取缺陷位置信息的能力。在训练阶段,增加正样本的数量,缓解模型训练时的正负样本不均衡。为证明该算法的有效性,在公共数据集GRDDC2020上进行验证,实验表明,改进后的YOLOv5算法F1-score相比于原YOLOv5算法提高2.1%,达到57.7%。
作者 左昊 牛晓伟 ZUO Hao;NIU Xiaowei
机构地区 重庆三峡学院
出处 《信息技术与信息化》 2023年第1期50-53,共4页 Information Technology and Informatization
  • 相关文献

参考文献2

二级参考文献50

共引文献33

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部