摘要
针对传统的路面缺陷检测算法,路面缺陷特征提取单一,且依赖于人工提取,导致检测效率低下的问题,提出了一种基于改进YOLOv5的路面缺陷检测算法。针对原算法对路面缺陷的位置信息提取不充分,引入CBAM注意力机制并对空间注意力中的7*7卷积层替换为3个串行5*5卷积后使用1*1卷积融合3个不同感受野下的特征信息,增强提取缺陷位置信息的能力。在训练阶段,增加正样本的数量,缓解模型训练时的正负样本不均衡。为证明该算法的有效性,在公共数据集GRDDC2020上进行验证,实验表明,改进后的YOLOv5算法F1-score相比于原YOLOv5算法提高2.1%,达到57.7%。
作者
左昊
牛晓伟
ZUO Hao;NIU Xiaowei
出处
《信息技术与信息化》
2023年第1期50-53,共4页
Information Technology and Informatization