摘要
Microglial activation plays an important role in neurodegenerative diseases.Once activated,they have macrophage-like capabilities,which can be beneficial by phagocytosis and harmful by se-cretion of neurotoxins.However,the resident microglia always fail to trigger an effective pha-gocytic response to clear dead cells or Aβdeposits during the progression of neurodegeneration.Therefore,the regulation of microglial phagocytosis is considered a useful strategy in searchingfor neuroprotective treatments.In this study,our results showed that low-power laser iradiation(LPLI)(20 J/cm²)could enhance microglial phagocytic function in LPS-activated microglia.Wefound that LPLI-mediated microglial phagocytosis is a Rac-1-dependent actin-based process,that a constitutively activated form of Rac1(RaclQ61L)induced a higher level of actin pol-ymerization than cells transfected with wild-type Racl,whereas a dominant negative form ofRacl(RaclT17N)markedly suppressed actin polymerization.In addition,the involvement of Racl activation after LPLI treatment was also observed by using a Raichu fluorescence resonance energy transfer(FRET)-based biosensor.We also found that PI3K/Akt pathway was required inthe LPLI-induced Raci activation.Our research may provide a feasible therapeutic approach tocontrol the progression of neurodegenerative diseases.
基金
supported by the National Basic Research Program of China(2011CB910402,2010CB732602)
the Program for Changjiang Scholars and Innovative Research Team in University(IRT0829)
the National Natural Science Foundation of China(30870676,30870658).