摘要
为减少高速磁浮列车运行时气动阻力,降低列车能耗,开展高速磁浮列车表面微结构气动减阻仿真研究。以国内某型高速磁浮列车为研究对象,建立头车+尾车两编组仿真模型,采用瞬态SST K-Omega IDDES湍流模型开展凹球状微结构对列车气动阻力影响仿真研究。仿真结果表明:在列车尾车流线型顶部区域加设凹球状微结构可降低列车整车压差阻力达12.3%,降低列车整车气动阻力3.2%。此外随着凹球状微结构沿流线型表面布置长度增加,气动阻力逐渐降低,布置长度为0.6倍流线型长度时,减阻比例达到7.6%。采用凹球状微结构来改变湍流流动特性是降低列车气动阻力的有效途径。
In order to reduce the aerodynamic drag force of the high-speed maglev train and reduce the energy consumption,the simulation research on aerodynamic drag reduction of high-speed maglev train surface microstructure was carried out.Taking a domestic high-speed maglev train as the research object,a head car+tail car two formation simulation model is established,and the transient SST k-Omega IDDES turbulence model is used to simulate the influence of concave spherical microstructure on the aerodynamic resistance of the train.The simulation results show that the pressure drop resistance of the whole train can be reduced by 12.3%and the aerodynamic resistance of the whole train can be reduced by 3.2%by adding concave spherical microstructure in the streamline top area of the train tail.In addition,with the increase of the length of the concave spherical microstructures along the streamlined surface,the aerodynamic drag decreases gradually.When the length is 0.6 times the streamlined length,the drag reduction ratio reaches 7.6%.It is an effective way to reduce the aerodynamic drag of trains by using concave spherical microstructures to change the turbulent flow characteristics.
作者
付善强
杜俊涛
丁叁叁
Fu Shanqiang;Du Juntao;Ding Sansan(National Engineering Research Center for High-speed EMU,CRRC Qingdao Sifang Co.,Ltd.,Qingdao,ShanDong 266000,China)
出处
《铁道技术标准(中英文)》
2023年第1期1-8,共8页
Railway Technical Standard(Chinese & English)
基金
山东省重点研发计划(2020CXGC010202)。
关键词
高速磁浮列车
气动阻力
气动减阻
凹球状微结构
high-speed maglev train
aerodynamic drag force
aerodynamic drag force reduction
concave spherical microstructure