期刊文献+

基于图优化算法的多视图拼接三维可视化技术研究

Multiview Point Registration in 3D Visualization Technology Based on Graph Optimization Algorithm
下载PDF
导出
摘要 多视图拼接技术还存在着在大范围区域内连续拼接时误差累积较快、整体精度不足的缺陷,这一问题仅依靠特征点匹配算法难以解决,而SLAM中的图优化方法由于采用了全局优化的策略,具有误差累计增长缓慢的优势,因此可以将特征点提取及匹配算法与图优化方法结合,在时域上进行图像配准,并通过最小二乘法优化从而减少累积误差,提高总体精度。 Registration of multiview point in large space often faces the challenge of rapid error accumulation and insufficient overall accuracy.It is usually difficult to solve this problem only with the help of feature point matching algorithms.The graph optimization method in SLAM has the advantage of slow error accumulation owing to its global optimization strategy.This research therefore combines the feature point extraction and matching algorithm with the graph optimization method to perform image registration in the time domain,and optimizes the results through the least square method to reduce the cumulative error and improves the overall accuracy.
作者 林晨 林晓斌 LIN Chen;LIN Xiao-bin(Physics and Electronic Information Engineering,Minjiang University,Fuzhou 350108,Fujian,China)
出处 《贵阳学院学报(自然科学版)》 2022年第4期96-99,119,共5页 Journal of Guiyang University:Natural Sciences
基金 2020年福建省中青年教师教育科研项目(科技类)“基于图优化算法的多视图拼接三维可视化关键技术研究”(项目编号:JAT200414)。
关键词 多视图拼接 特征点提取及匹配 图优化 最小二乘法优化 Multiview Registration Feature Point Extraction and Matching Graph Optimization Least Square Optimization
  • 相关文献

参考文献6

二级参考文献200

  • 1李德仁.21世纪测绘发展趋势与我们的任务[J].中国测绘,2005(2):36-37. 被引量:28
  • 2李德仁,沈欣.论智能化对地观测系统[J].测绘科学,2005,30(4):9-11. 被引量:55
  • 3李德仁.移动测量技术及其应用[J].地理空间信息,2006,4(4):1-5. 被引量:187
  • 4李德仁,胡庆武.基于可量测实景影像的空间信息服务[J].武汉大学学报(信息科学版),2007,32(5):377-380. 被引量:77
  • 5Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part I. The essential algorithms[J]. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-108.
  • 6Smith R C, Cheeseman P. On the representation and estimation of spatial uncertainty[J]. International Journal of Robotics Re- search, 1986, 5(4): 56-68.
  • 7Thrun S, Liu Y F, Koller D, et al. Simultaneous localization and mapping with sparse extended information filters[J]. Inter- national Journal of Robotics Research, 2004, 23(7/8): 693-716.
  • 8Montemerlo M, Thrun S, Koller D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping prob- lem[C]//Proceedings of the National Conference on Artificial Intelligence. Menlo Park, USA: AAAI, 2002: 593-598.
  • 9Thrun S. Robotic mapping: A survey[M]//Exploring Artificial Intelligence in the New Millennium. San Francisco, USA: Mor- gan Kaufmann, 2002: 1-35.
  • 10Huang S D, Dissanayake G. Convergence and consistency anal- ysis for extended Kalman filter based SLAM[J]. IEEE Transac- tions on Robotics, 2007, 23(5): 1036-1049.

共引文献316

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部