摘要
采用非连续变形分析方法(Discontinuous Deformation Analysis,DDA)对混沌摆进行模拟.分别建立了两自由度和四自由度无阻尼非线性自由振动的混沌摆模型,并对两种模型的运动微分方程进行推导,利用Matlab求解得到两种自由度下的摆角的理论解.对原始DDA方程进行简化,推导得到刚体DDA方程,并利用Matlab编写了DDA程序,对两种摆的运动进行数值模拟,分别得到了两种模型下不同摆杆的角度时程图,揭示了混沌现象,并通过与理论结果进行对比,说明了该程序的适用性.
The method of discontinuous deformation analysis(DDA)is used to simulate the chaotic pendulum.Firstly,a two-degree-of-freedom model and a four-degree-of-freedom chaotic pendulum model with undamped nonlinear free vibration are established.The motion differential equations of the two models are derived and the theoretical solutions of the pendulum angles under two degrees of freedom are obtained by Matlab.The original DDA equation is simplified,the rigid DDA equation is derived,and the DDA program is written by Matlab.The motion of two kinds of pendulum is simulated numerically.The time history diagrams of different pendulum bars under the two models are obtained respectively,and the applicability of the program is illustrated by comparing with the theoretical results.
作者
于昊
喻勇
YU Hao;YU Yong(School of Mechanics and Aerospace Engineering,SouthwestJiaotong University,Chengdu,Sichuan 611756,China;Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province,Southwest Jiaotong University,Chendu,Sichuan 611756,China)
出处
《大学物理》
2022年第12期17-21,25,共6页
College Physics
基金
西南交通大学2021年本科教育教学研究与改革项目(2103107)资助。