期刊文献+

基于浅层定位的动态细化目标检测网络 被引量:1

Dynamic refinement networks for object detection based on shallow localization
原文传递
导出
摘要 现有的目标检测框架中,浅层弱分类能力是制约着网络精度进一步提高的关键.对此,提出基于浅层定位信息的动态细化检测网络.该网络在单阶段算法的基础上,通过增加多连接模块来增强浅层特征,同时去除浅层的分类操作以最大程度地保留浅层的定位结果,并将其作为候选框送入深层网络.深层网络通过使用引入自适应因子的感受野模块构建特征金字塔,以获得丰富的语义信息用于对浅层的回归结果进行判别和微调.最后设计基于自注意的可变形卷积头,通过对候选框的偏移来自发进行定位校准,使得网络获得精确的检测结果.在PASCAL VOC和MS COCO数据集上的实验结果表明,所提出的网络结构可以实现优异的检测精度. In the existing detection framework,the weak classification ability of the shallow layer is the key that restricts the further improvement of network accuracy.In order to solve the problem,a dynamic refinement detection network based on shallow positioning information is proposed.Based on single-stage algorithms,the network enhances the features of the shallow layer by adding multiple connection modules and removes the classification operations of the shallow layer to retain the location results of the shallow layer to the maximum.The location is used as the default boxes of the deep-level network.The deep level network is constructed by using a receptive field module with adaptive factors to obtain rich semantic information for the discrimination and fine-tuning of the regression results from the shallow layer.Finally,the designed deformable convolution head based on self-attention can automatically calibrate the position by shifting the detection box,which helps the network obtain accurate detection results.The experimental results on PASCAL VOC and MS COCO datasets show that the proposed network architecture achieves excellent detection accuracy.
作者 郑棨元 陈莹 ZHENG Qi-yuan;CHEN Ying(Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education,Jiangnan University,Wuxi 214122,China)
出处 《控制与决策》 EI CSCD 北大核心 2023年第1期49-57,共9页 Control and Decision
基金 国家自然科学基金项目(62173160)。
关键词 目标检测 可变形卷积 感受野 特征金字塔 自适应因子 单阶段算法 object detection deformable convolution receptive field feature pyramid adaptive factor one-stage algorithms
  • 相关文献

参考文献5

二级参考文献3

共引文献110

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部