期刊文献+

2D Minimum Compliance Topology Optimization Based on a Region Partitioning Strategy

下载PDF
导出
摘要 This paper presents an extended sequential element rejection and admission(SERA)topology optimizationmethod with a region partitioning strategy.Based on the partitioning of a design domain into solid regions and weak regions,the proposed optimizationmethod sequentially implements finite element analysis(FEA)in these regions.After standard FEA in the solid regions,the boundary displacement of the weak regions is constrained using the numerical solution of the solid regions as Dirichlet boundary conditions.This treatment can alleviate the negative effect of the material interpolation model of the topology optimization method in the weak regions,such as the condition number of the structural global stiffness matrix.For optimization,in which the forward problem requires nonlinear structural analysis,a linear solver can be applied in weak regions to avoid numerical singularities caused by the over-deformedmesh.To enhance the robustness of the proposedmethod,the nonmanifold point and island are identified and handled separately.The performance of the proposed method is verified by three 2D minimum compliance examples.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期655-683,共29页 工程与科学中的计算机建模(英文)
基金 supported by the National Science Foundation of China (Grant No.51675506).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部