期刊文献+

重稀土HRENiGa_(2)(HRE=Dy,Ho或Er)化合物的优异低温磁热性能

Excellent cryogenic magnetocaloric properties in heavy rare-earth based HRENiGa_(2)(HRE=Dy,Ho,or Er)compounds
原文传递
导出
摘要 RENiX_(2)化合物(其中RE为稀土元素,X为p区元素)在低温磁制冷应用中受到高度关注.它们根据元素的不同可以结晶成CeNiSi_(2)型、NdNiGa_(2)型或MgCuAl_(2)型晶体结构,并表现出不同类型的磁有序性从而影响其磁性.MgCuAl_(2)型铝化物由于具有有利的铁磁基态从而表现出比CeNiSi_(2)型硅化物和NdNiGa_(2)型镓化物更大的磁热性能.此外,RENiGa_(2)镓化物根据RE元素的不同可以结晶成NdNiGa_(2)或MgCu Al_(2)型结构.本文中,我们选择重稀土(HRE)元素来探索HRENiGa_(2)(HRE=Dy,Ho或Er)镓化物的微观结构、磁有序和磁热性能.三种化合物均以MgCuAl_(2)型晶体结构结晶,并且随着温度的升高经历了从铁磁到顺磁的二级磁相转变.DyNiGa_(2),HoNiGa_(2)和ErNiGa_(2)化合物的最大等温磁熵变(|ΔSisomax|)值分别为6.2,10.4和11.4 J kg^(-1)K^(-1)(0-5T),这与许多最近报道的低温磁制冷材料性能相当.特别地,HoNiGa_(2)和ErNiGa_(2)化合物(包括它们的复合材料)在氢气液化的温度范围内表现出优异的磁热性能. RENiX_(2)compounds,where RE=rare-earth element and X=p-block element,have been highly regarded for cryogenic magnetocaloric applications.Depending on the elements,they can crystallize in CeNiSi_(2)-type,NdNiGa_(2)-type,or MgCuAl_(2)-type crystal structures,showing different types of magnetic ordering and thus affect their magnetic properties.Regarding the magnetocaloric effect,MgCuAl_(2)-type aluminides show larger values than those of the CeNiSi_(2)-type silicides and the NdNiGa_(2)-type gallides due to the favored ferromagnetic ground state.However,RENiGa_(2)gallides can crystallize in either NdNiGa_(2)-or MgCuAl_(2)-type structures depending on the RE element.In this work,we select heavy RE(HRE)elements for exploring the microstructure,magnetic ordering and magnetocaloric performance of HRENiGa_(2)(HRE=Dy,Ho or Er)gallides.They all crystallize in the desired MgCuAl_(2)-type crystal structure which undergoes a second-order transition from ferro-to para-magnetic state with increasing temperature.The maximum isothermal entropy change(|ΔSisomax|)values are 6.2,10.4,and11.4 J kg^(-1)K^(-1)(0-5 T)for DyNiGa_(2),HoNiGa_(2),and ErNiGa_(2),respectively,which are comparable to many recently reported cryogenic magnetocaloric materials.Particularly,the excellent magnetocaloric properties of HoNiGa_(2)and ErNiGa_(2)compounds,including their composite,fall in the temperature range that enables them for the in-demand hydrogen liquefaction systems.
作者 郭丹 Luis M.Moreno-Ramírez Jia-Yan Law 张义坤 Victorino Franco Dan Guo;Luis M.Moreno-Ramírez;Jia-Yan Law;Yikun Zhang;Victorino Franco(Key Laboratory of Novel Materials for Sensor of Zhejiang Province&School of Electronics and Information Engineering,Hangzhou Dianzi University,Hangzhou 310012,China;Departamento de Física de la Materia Condensada,ICMS-CSIC,Universidad de Sevilla,P.O.Box 1065.41080-Sevilla,Spain;State Key Laboratory of Advanced Special Steels&Shanghai Key Laboratory of Advanced Ferrometallurgy&School of Materials Science and Engineering,Shanghai University,Shanghai 200072,China)
出处 《Science China Materials》 SCIE EI CAS CSCD 2023年第1期249-256,共8页 中国科学(材料科学(英文版)
基金 supported by the National Natural Science Foundation of China(52071197) the Science and Technology Commission of Shanghai Municipality(19ZR1418300 and 19DZ2270200) the Independent Research and Development Project of State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2021-Z05) Grant PID2019105720RB-I00 funded by MCIN/AEI/10.13039/501100011033,US/JUNTA/FEDER-UE(US-1260179) Consejería de Economía,Conocimiento,Empresas y Universidad de la Junta de Andalucía(P18-RT-746) the support provided by China Scholarship Council(CSC)of the Ministry of Education,China(202006890050)。
关键词 重稀土 磁热性能 晶体结构 磁制冷材料 稀土元素 磁有序 等温磁熵变 硅化物 rare-earth-nickel-gallides magnetocaloric effect magnetic phase transitions
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部