期刊文献+

改进YOLO的遮挡行人检测仿真 被引量:6

Simulation of Occluded Pedestrian Detection Based on Improved YOLO
下载PDF
导出
摘要 针对已有的YOLO(you only look once)模型在行人目标检测中对遮挡及多尺度行人易造成漏检和精度较低的问题,提出改进YOLO行人检测算法YOLO-SSC-s(YOLO-spatial pyramid poolingshuffle attention-convolutional block attention module-simplified)。修改YOLO模型骨干网络,增强跨尺度特征提取能力;在3个YOLO层前的不同位置引入空间金字塔池化模块以及空间与通道、组特征2种注意力机制,加强对不同尺度行人的特征融合;为了缓解网络模型过于复杂而降低检测性能,提高模型训练效率,根据实际情况对网络结构进行简化。实验结果表明:与YOLOv3等检测模型相比,YOLO-SSC-s可有效提高遮挡情形下中、小行人目标的检测精度、速度,降低漏检率。 Aiming at the high missed detection rates and low accuracy of existing YOLO for occlusion and multi-scale pedestrian targets,an improved pedestrian detection algorithm is proposed.YOLO backbone is modified to enhance the capabilities of cross-scale feature extraction.To increase the pedestrian feature fusion capabilities of different scales,a spatial pyramid pooling module and two attention mechanisms are introduced at different positions in front of YOLO layers.Aiming at the detection performance degradation due to the extreme complexity of network module and to improve the model training efficiency,the network structure is pruned according to the actual situation.Experimental results show that compared with YOLOv3 etc,YOLO-SSC-s model can effectively improve the medium and small pedestrian targets detection accuracy and speed,and reduce the missed detection rates under the condition of occlusion.
作者 向南 王璐 贾崇柳 蹇越谋 马小霞 Xiang Nan;Wang Lu;Jia Chongliu;Jian Yuemou;Ma Xiaoxia(Liangjiang International College,Chongqing University of Technology,Chongqing 401135,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2023年第2期286-299,共14页 Journal of System Simulation
基金 国家自然科学基金面上项目(61872051) 重庆市教育委员会科学技术研究项目(KJQN202001118)。
关键词 行人检测 YOLO(you only look once) 遮挡 注意力机制 pedestrian detection you only look once(YOLO) occlusion attention mechanisms
  • 相关文献

同被引文献60

引证文献6

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部