期刊文献+

多关节深海潜水器纵垂面建模与俯仰控制

Vertical Profile Modeling and Pitch Attitude Control for Multi-Joint Autonomous Underwater Vehicle
下载PDF
导出
摘要 为实现深海纵向剖面探测,给出了一种多关节潜水器的设计方案,并对潜水器的纵垂面建模与俯仰姿态控制问题进行了研究。针对浮力和重力不平衡的情况,根据牛顿第二定律和力矩平衡原理建立了多关节潜水器在纵垂面上的运动学和动力学模型。考虑到多关节潜水器在纵倾运动控制过程中存在未知干扰和过驱动等问题,提出了一种线性二次型最优自抗扰控制方案。根据实验样机硬件设计要求,将关节摆动角度作为被控系统输入。将系统内力与外部扰动作为系统总扰动,采用线性扩张状态观测器对总扰动进行估计。针对系统过驱动问题,采用奇异值分解法求解控制系数矩阵的伪逆矩阵,实现总扰动补偿与输入合理分配。采用线性二次最优控制优化线性反馈控制增益,实现控制增益按照期望输入输出效果达到最优。在SIMULINK平台上,搭建模型仿真环境,在有、无输入扰动两种情况下,使用线性二次型最优自抗扰控制器实现俯仰控制仿真。结果表明,所设计的控制器具有低超调、抗干扰和精准度高的特性。 To achieve vertical profile exploration of deep-sea, a multi-joint autonomous underwater vehicle(MJ-AUV) was designed, and the vertical profile modeling and pitch control method of the vehicle were studied. Considering the situation of gravity and buoyancy imbalance, the dynamics model of the MJ-AUV in vertical profile was established according to Newton’s second law and torque balance principle. To solve the problems of unknown disturbance and input redundancy in the pitch control of the MJ-AUV,a linear quadratic regulator active disturbance rejection control(LQR-ADRC) method was proposed. The joint angle of the MJ-AUV was taken as the input of the model to satisfy the design requirements of the prototype;The linear extended state observer was designed to estimate the total disturbance consisting of internal forces and external disturbances;The pseudo-inverse matrix of the control coefficient matrix was obtained by singular value decomposition(SVD) method to achieve total disturbance compensation and reasonable allocation of input;The LQR was adopted to optimize the linear feedback control gains according to the expected input and output effects. The simulation environment of MJ-AUV was built on SIMULINK platform, and the pitch control of MJ-AUV was simulated using the LQR-ADRC controller with and without input disturbance. The simulation results demonstrate that the proposed controller has the characteristics of low overshoot, anti-interference and high accuracy.
作者 于林 孟庆浩 刘科显 徐雪寒 YU Lin;MENG Qing-hao;LIU Ke-xian;XU Xue-han(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China)
出处 《计算机仿真》 北大核心 2022年第12期357-365,共9页 Computer Simulation
基金 国家重点研发计划项目(2017YFC0306200)。
关键词 多关节潜水器 纵垂面建模 俯仰姿态控制 线性扩张状态观测器 总扰动补偿 线性二次型最优控制器 Multi-joint autonomous underwater vehicle(MJ-AUV) Vertical profile modeling Pitch control Linear extended state observer Total disturbance compensation Linear quadratic regulator
  • 相关文献

参考文献4

二级参考文献37

  • 1彭学伦.水下机器人的研究现状与发展趋势[J].机器人技术与应用,2004(4):43-47. 被引量:65
  • 2陈丽,王越超,李斌.蛇形机器人研究现况与进展[J].机器人,2002,24(6):559-563. 被引量:57
  • 3王田苗,梁建宏.基于理想推进器理论的尾鳍推力与效率估算[J].机械工程学报,2005,41(8):18-23. 被引量:21
  • 4LONG J H, Biomimetic robotics: Self-propelled physical models test hypotheses about the mechanics and evolution of swimming vertebrates[J]. J. Mech. Eng. Sci., 2007,221(10): 1 193-1200.
  • 5ALVARADO P V, YOUCEF T K. Design of machines with compliant bodies for biomimetic locomotion in liquid environments[J]. Journal of DYrlamic Systems, Measurement and Control, 2006, 128: 3-13.
  • 6KORAY K S, GEORGE G A. Dynamic modeling and hydrodynamic performance of biomimetic underwater robot locomotion[J]. Autonomous Robotics, 2002, 13:223-240.
  • 7EUNJUNG K. YOUNGIL Y. Design and dynamic analysis of fish robot: PoTuna[C]// 2004 IEEE International Conference on Robotics and Automation, April 26-May 1, 2004, New Orleans, LA, United States. Piscataway, NJ: IEEE, 2004:4 887-4 892.
  • 8GRAY J. Studies in animal locomotion VI: The propulsive powers of the dolphin[J]. J. Exp. BioL, 1936, 13: 192-199.
  • 9TAYLOR G. Analysis of the swimming of long narrow animals[J]. Proc. R. Soc. Lond. A, 1952, 214: 158-183.
  • 10LIGHTHILL M J. Note on the swimming of slender fish[J]. Journal of Fluid Mechanics, 1960, 9: 305-317.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部