期刊文献+

改进FP-Growth算法下云服务器故障诊断研究 被引量:2

Study on Fault Diagnosis of Cloud Server under Improved FP-Growth Algorithm
下载PDF
导出
摘要 大规模云服务器的资源类型较多,数据量巨大,因此云计算环境下服务器参数易发生异常问题,导致服务器产生故障。提出基于改进频繁模式增长(Frequent Pattern Growth, FP-Growth)算法的云服务器故障诊断方法。优先建立支持度函数完成服务器各项参数对应支持度的映射。采用关键字筛选方法将频繁项划分为关键项表和非关键项表两个部分。应用改进的FP-Growth算法,设定参数阈值规则,获取各个服务器故障向量变量的子集,以此为依据组建不同故障变量的条件频繁模式树(Frequent Pattern Tree, FP-tree),通过各个数据子集挖掘出的频繁项集求并集,得到包含全部故障诊断信息的频繁项集,最终完成云服务器故障诊断。经实验测试结果表明,所提方法能够在5ms内完成云服务器多类型故障诊断,且故障诊断精度为90%~100%。实验结果证明,上述方法具有可靠的应用性能。 Large scale ECS has many types of resources and huge amounts of data. Therefore, server parameters in cloud computing environments are prone to abnormal problems, leading to server failures. In this paper, a method of fault diagnosis for cloud server based on improved FP-Growth(Frequent Pattern Growth) algorithm is proposed. At first, the support function was established to complete the mapping of the degree of support corresponding to the parameters of server. Second, frequent items were divided into two parts by keyword filtering method, namely the tables of key items and non-key items. On this basis, the improved FP growth algorithm was applied to setting parameter threshold rules, thus obtaining the subsets of fault vector variables of each server. Based on this, a conditional FP-Tree(Frequent Pattern Tree) of different fault variables was constructed. Moreover, the union was obtained by the frequent itemset mined from each data subset, so that the frequent itemsets containing all fault diagnosis information were obtained. Finally, the fault diagnosis was completed. Experimental results prove that the proposed method can complete the multi-type fault diagnosis of cloud server within 5ms, and the accuracy fault diagnosis is between 90% and 100%. Therefore, this method has reliable application performance.
作者 张衡 王大勇 宋朋 ZHANG Heng;WANG Da-yong;SONG Peng(Liaoning University,Shenyang Liaoning 110036,China)
机构地区 辽宁大学
出处 《计算机仿真》 北大核心 2022年第12期373-377,共5页 Computer Simulation
基金 教育部高等教育司课题基金项目(202102079003) 中国高等教育学会2020年度专项课题(2020SYD07)。
关键词 改进频繁模式增长算法 云服务器 故障诊断 频繁项集 Improved FP-Growth algorithm Cloud server Fault diagnosis Frequent item-set
  • 相关文献

参考文献15

二级参考文献136

共引文献127

同被引文献23

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部