期刊文献+

Hydrocephalic cerebrospinal fluid flowing rotationally with pulsatile boundaries:A mathematical simulation of the thermodynamical approach

下载PDF
导出
摘要 To study the kinematics of flow rate and ventricular dilatation,an analytical perturbation approach of hydrocephalus has been devised.This research provides a comprehensive investigation of the characteristics of cerebrospinal fluid(CSF)flow and pressure in a hydrocephalic patient.The influence of hydrocephalic CSF,flowing rotationally with realistic dynamical characteristics on pulsatile boundaries of subarachnoid space,was demonstrated using a nonlinear controlling system of CSF.An analytical perturbation method of hydrocephalus has been developed to investigate the biomechanics of fluid flow rate and the ventricular enlargement.In this paper presents a detailed analysis of CSF flow and pressure dynamics in a hydrocephalic patient.It was elaborated with a nonlinear governing model of CSF to show the influence of hydrocephalic CSF,flowing rotationally with realistic dynamical behaviors on pulsatile boundaries of subarachnoid space.In accordance with the suggested model,the elasticity factor changes depending on how much a porous layer,in this case the brain parenchyma,is stretched.It was improved to include the relaxation of internal mechanical stresses for various perturbation orders,modelling the potential plasticity of brain tissue.The initial geometry that was utilised to create the framework of CSF with pathological disease hydrocephalus and indeed the output of simulations using this model were compared to the actual progression of ventricular dimensions and shapes in patients.According to this observation,the non-linear and elastic mechanical phenomena incorporated into the current model are probably true.Further modelling of ventricular dilation at a normal pressure may benefit from the existence of a valid model whose parameters approximate genuine mechanical characteristics of the cerebral cortex.
出处 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期79-86,共8页 力学快报(英文版)
基金 supported by the government of the Basque Country for the ELKARTEK21/10 KK-2021/00014 and ELKARTEK22/85 research programs,respectively。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部