期刊文献+

相变储能技术的传热强化方法综述 被引量:4

Review on Heat Transfer Enhancement Methods of Latent Heat Storage Technology
下载PDF
导出
摘要 相变储热技术能够解决热能传递过程中的时空不连续问题,可有效减少热能的损耗,加速中国碳中和目标实现进程。但受限于相变材料的低导热特性,实际应用中的相变储热系统均需配置相应的传热强化装置,使系统复杂性和投资成本大幅增加。本文对相变储热技术的传热强化方法进行了简要分类,即单一传热强化技术、组合传热强化技术、多级传热强化技术以及液态PCM流动强化技术,并对后三者的不足进行阐述和说明。同时,基于相应结论,归纳总结了热源与热汇的三种相对几何关系,即扩张式、平行式和收缩式,可有效指导相变储热器结构总体设计。最后,对相变储热技术的未来应用进行了展望,应基于热力学和系统论等知识,从系统层面完成相变储热器的设计,实现热力学性能和经济性的最优。 Latent heat storage(LHS)technology can solve the time-space non-continuity in the transfer process of thermal energy,which can effectively reduce heat loss and accelerate the realization of China′s carbon neutrality goal.However,the LHS system in practical applications needs to be equipped with heat transfer enhancement devices,considering the low thermal conductivity of phase change materials(PCMs),which significantly increases the system complexity and capital cost.In this review,heat transfer enhancement methods,namely single heat transfer enhancement technology,combined heat transfer enhancement technology,multi-stage heat transfer enhancement technology,and liquid PCM flow enhancement technology,are briefly classified.The corresponding shortcomings of the last three technologies are described and explained.Based on the obtained conclusions,three relative geometric relations between the heat source and heat sink are summarized,namely the expansion type,parallel type,and contraction type,which can effectively guide the overall design of the latent heat storage units.Finally,the future application prospectives of latent heat storage technology are discussed.It is necessary to design latent heat storage from the system level based on knowledge of thermodynamics and system theory to achieve optimal thermodynamic performance and economic efficiency.
作者 张春伟 陈静 王成刚 景卓 张学军 江龙 Zhang Chunwei;Chen Jing;Wang Chenggang;Jing Zhuo;Zhang Xuejun;Jiang Long(Beijing Institute of Aerospace Testing Technology,Beijing,100074,China;Institute of Refrigeration and Cryogenics,Zhejiang University,Hangzhou,310027,China;Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province,Hangzhou,310027,China)
出处 《制冷学报》 CAS CSCD 北大核心 2023年第1期1-13,共13页 Journal of Refrigeration
基金 国家重点研发计划(2017YFB0603702) 国家自然科学基金(51976178)资助项目。
关键词 相变 对流 传热 强化 储热 phase change convection heat transfer enhancement heat storage
  • 相关文献

参考文献5

二级参考文献79

  • 1陈振乾,施明恒.泡沫金属内流体冻结相变传热的数值模拟[C].制冷空调新技术进展-第四届全国制冷空调新技术研讨会论文集.2006:707-710.
  • 2El-Genk M S, Cronenberg A W. Solidification in a semiinfinite region with boundary conditions of the second kind: an exact solution[J]. Lett. Heat Mass Transfer, 1979, 6:321-327.
  • 3Shankar Krishnan, Jayathi Y Murthy, Suresh V Garimella. A Two-Temperature Model for the Analysis of Passive Thermal Control Systems[J]. Journal of Heat Transfer, 2004, 126 (4) :628-637.
  • 4何钦波,童明伟,刘玉东.低温相变蓄冷纳米流体成核过冷度的实验研究[J].制冷学报,2007,28(4):33-36. 被引量:47
  • 5曹建光,步柄根,李强,等.泡沫铝在相变储能装置中的应用[C].卫星热控制技术研讨会论文集.北京:中国人民解放军总装备部卫星技术专业组,2003:297-305.
  • 6张涛,余建祖.泡沫铜作为填充材料的相变储热实验[J].北京航空航天大学学报,2007,33(9):1021-1024. 被引量:30
  • 7程文龙,韦文静.高孔隙率泡沫金属相变材料储能、传热特性[J].太阳能学报,2007,28(7):739-744. 被引量:57
  • 8Acem, Z., Lopez, J., & Palomo Del Barrio, E. (2010). KNO3/NaNO3 - Graphite materials for thermal energy storage at high temperature: Part I. Elaboration methods and thermal properties. Applied Thermal Engineering, 30(13), 1580-1585.
  • 9Cao, F., & Yang, B. (2014). Supercooling suppression of microencapsulated phase change materials by optimizing shell composition and structure. Applied Energy, 113,1512-1518.
  • 10Chino, K., & Araki, H. (2000). Evaluation of energy storage method using liquid air. Heat Transfer-Asian Research, 29(5), 347-357.

共引文献49

同被引文献38

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部