期刊文献+

基于深度学习压缩感知技术在子宫T2WI中的对比研究 被引量:3

Application of Compressed Sensing Deep Learning-based Reconstruction in Uterine T2WI MR Imaging
下载PDF
导出
摘要 目的:使用深度学习压缩感知技术行子宫T2WI,通过对综合质量的评估,探讨其在临床应用中的可行性.方法:选取临床女性盆腔检查患者80例,分别应用常规并行采集(PI)和深度学习卷积神经网络压缩感知(CNN-CS)技术行T2WI,各采集40例.通过对运动伪影和组织边界清晰度评分进行评估,以及对子宫内膜、肌层与结合带对比度进行比较.结果:CNN-CS扫描的T2WI图像质量总体评分显著高于PI法(2.75±0.44 vs 2.35±0.53,P<0.05);CNN-CS组子宫内膜、肌层与结合带对比度均优于常规PI组(0.74±0.07 vs 0.60±0.11,P<0.001;0.53±0.11 vs 0.44±0.10,P<0.05);CNN-CS组成像时间小于常规PI组.结论:与常规PI技术成像对比,基于深度学习的CNN-CS技术对子宫T2WI能够减少伪影的影响并提高组织图像对比度,可优化图像质量并减少成像时间. Purpose:To improve the image quality of female uterus T2WI with deep learning compressed sensing technique,and to explore its feasibility in clinical application.Methods:Eighty female patients undergoing pelvic examination were selected.T2WI was performed using conventional parallel acquisition(PI)and deep learning convolutional neural network compressed sensing(CNN-CS)technology,respectively,with 40 cases collected each.Image motion artifact and boundary sharpness of uterine tissue were scored.The contrast of endometrium,myometrium to junctional zone were compared.Results:The overall score of T2WI image quality of CNN-CS scanning was significantly higher than that of PI technique(2.75±0.44 vs 2.35±0.53,P<0.05);the contrast of endometrium,myometrium to the junctional zone in CNN-CS group was better than that in traditional PI group(0.74±0.07 vs 0.60±0.11,P<0.001;0.53±0.11 vs 0.44±0.10,P<0.05);The acquisition time of the CNN-CS group was shorter than that of the conventional PI group.Conclusion:Compared with conventional PI technique,the CNN-CS technique based on deep learning can be used to reduce the influence of respiratory artifacts and improve tissue image contrast,which can optimize image quality and reduce acquisition time.
作者 刘锴 孙海涛 陈财忠 温喜喜 曾蒙苏 徐鹏举 LIU Kai;SUN Haitao;CHEN Caizhong;WEN Xixi;ZENG Mengsu;XU Pengju(Department of Radiology,Zhongshan Hospital,Fudan University,Shanghai Institute of Medical Imaging;Shanghai United Imaging Healthcare Co.,Ltd)
出处 《中国医学计算机成像杂志》 CSCD 北大核心 2023年第1期58-61,共4页 Chinese Computed Medical Imaging
关键词 压缩感知 磁共振成像 深度学习 卷积神经网络 人工智能 Compressed sensing Magnetic resonance imaging Deep learning Convolutional neural network Artificialintelligence
  • 相关文献

参考文献8

二级参考文献65

  • 1高宇,黎良山,王栋.柔性线圈与硬质线圈在肩关节MRI图像质量的比较[J].浙江临床医学,2019,21(3):388-390. 被引量:4
  • 2冯晓源,刘含秋.功能磁共振成像在中国的研究现状[J].中国医学计算机成像杂志,2004,10(5):292-298. 被引量:19
  • 3Shannon CE. Communication in the presence of noise. Proceedings IEEE, 1949, 37: 10-21.
  • 4Cand6s EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. Information Theory, IEEE Transactions, 2006, 52(2): 489-509.
  • 5Donoho D L. Compressed sensing. Information Theory, IEEE Transactions, 2006, 52(4): 1289-1306.
  • 6Baraniuk RG. Compressive sensing [lecture notes]. Signal Processing Magazine IEEE, 2007, 24(4): 118-121.
  • 7Cand6s EJ, Wakin MB. An introduction to compressive sampling. Signal Processing Magazine IEEE, 2008, 25(2): 21-30.
  • 8Kutyniok G. Compressed sensing: theory and applications, arXiv, 2012: 1203, 3815.
  • 9Jung H, Ye JC. Performance evaluation of accelerated functional MRI acquisition using compressed sensing. Biomedical Imaging: from nano to macro, 2009. IEEE, 2009: 702-705.
  • 10Vaswani N. Kalman filtered compressed sensing. Image Processing, 2008. IEEE, 2008: 893-896.

共引文献191

同被引文献39

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部