摘要
针对煤矿巷道掘进智能化进程中存在的“掘快支慢”难题,总结分析了国内外快速掘进钻锚技术和装备以及类似多任务多机械臂控制技术的研究现状,指出研发具有多机械臂多钻机协作的煤矿巷道钻锚机器人是破解永久支护难题的重要发展方向。提出了多机械臂多钻机协作的钻锚机器人基本方案,凝练了影响钻锚机器人性能的“有限时空多机械臂与多钻机布局优化、面向装卸任务的机械臂姿态控制、复杂受限空间机械臂最优轨迹规划和多机械臂多钻机智能协同控制”四大关键技术,并给出了解决思路和方法。针对在有限时空约束下钻锚机器人结构布局优化问题,构建了钻锚机器人配置优化模型,提出了时空最优的钻锚机器人多机械臂与多钻机结构布局方案,旨在提高钻锚效率的同时获得最优空间布局;针对机械臂与钻机协同位姿控制问题,提出了基于机器视觉和强化学习的机械臂抓取与布放控制方法,旨在提高机械臂末端位姿控制精度,实现精准装卸物料作业;针对复杂受限空间机械臂最优轨迹规划问题,建立了机械臂多目标轨迹优化模型,提出了基于随机采样与包围盒相结合的机械臂防碰撞轨迹优化方法,旨在保证机械臂在搬运过程中安全、可靠、高效运行;针对钻锚机器人多机械臂与多钻机并行协同控制问题,构建了以工序时长最短为目标的时间协同任务分配模型,通过求解得到最优任务指派矩阵和多机械臂相交任务轨迹的优先级,并提出了在所有机械臂无碰撞运动的同时收敛于期望轨迹的分布式协同控制策略,旨在实现钻锚机器人多机械臂多钻机系统的智能协同控制和并行作业。多机械臂多钻机的钻锚机器人及其关键技术研究,对于创新研发高性能、高效率、高可靠、高智能的煤矿巷道钻锚机器人,确保煤矿巷道安全、高效、绿色智能掘进具有十分重要的意义。
For the problem of“fast tunneling and slow supporting”in the intelligent process of coal mine tunneling,the research status of domestic and foreign fast tunneling and drilling anchor technology and equipment and similar multi-tasking and multi-manipulator control technology are summarized and analyzed,It is concluded that the development of coal mine tunneling drilling anchor robot with multi-manipulator and multi-rig cooperation is an important development direction to solve the problem of permanent support.The basic plan of the drilling anchor robot with multi-manipulator and multi-rig cooperation is proposed,and the four key techniques of impacting the performance of drilling anchor robot are summarized.The solutions and methods of the four key technologies for layout optimization of multi manipulator and multi-rig in finite space and time,attitude control of manipulator for loading and unloading tasks,optimal trajectory planning of manipulator in complex confined space and intelligent cooperative control of multi-manipulator and multi-rig are presented.The problem of structure layout optimization of drilling anchor robot under finite space-time constraints,the configuration optimization model of drilling anchor robot is established and the spatiotemporal optimal layout scheme of drilling anchor robot with multi-manipulator and multi-rig is proposed,in order to improve the efficiency of drilling anchor and obtain the optimal layout space.For pose control of multi-manipulator and multi-rig cooperation,the grasping and placement control method of manipulator based on machine vision and reinforcement learning is put forward to realize accurate material handling through raising the end attitude control accuracy of manipulator.Aiming to the problem of optimal trajectory planning for manipulator in a complex constrained space,the multi-objective trajectory optimization model of manipulator is established and an anti-collision trajectory optimization method based on random sampling and bounding box is presented,in order to ensure safe,reliable and efficient operation of manipulator in the handling process.For the problem of parallel cooperative control of multi-manipulator and multi-rig,the time-coordinated task allocation model with the shortest process duration as the goal is established and the optimal task assignment matrix and priority of intersecting task trajectories of multi-manipulator are obtained by solving the model,and a distributed adaptive control strategy converged to the desired trajectory is proposed while all the manipulators move collision-free,in order to realize the intelligent cooperative control and parallel operation of drilling anchor robot with multi-manipulator and multi-rig cooperation.The research on drilling anchor robot with multi-manipulator and multi-rig and its key technologies are of great significance for innovating and developing intelligent drilling anchor robot with high quality,high efficiency,and high reliability and ensuring safe,efficient,green and intelligent tunneling of coal mine roadway.
作者
马宏伟
孙思雅
王川伟
毛清华
薛旭升
王鹏
夏晶
贾泽林
郭逸风
崔闻达
MA Hongwei;SUN Siya;WANG Chuanwei;MAO Qinghua;XUE Xusheng;WANG Peng;XIA Jing;JIA Zelin;GUO Yifeng;CUI Wenda(School of Mechanical Engineering,Xi'an Unwersity of Science and Technology,Xi'an 710054;Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Detection and Control,Xi'an 710054)
出处
《煤炭学报》
EI
CAS
CSCD
北大核心
2023年第1期497-509,共13页
Journal of China Coal Society
基金
国家自然科学基金重点资助项目(51834006)
国家自然科学基金面上资助项目(51975468,52174150)。
关键词
煤矿巷道
钻锚机器人
布局优化
机械臂位姿控制
轨迹规划
智能协同控制
coal mine roadway
drilling anchor robot
layout optimization
pose control of manipulator
trajectory planning
intelligent collaborative control