期刊文献+

多传感器信息融合的船舶机械设备状态智能检测研究 被引量:5

Research on intelligent detection of ship mechanical equipment state based on multi-sensor information fusion
下载PDF
导出
摘要 研究基于多传感器信息融合的船舶机械设备状态智能检测方法,智能化诊断船舶机械设备异常状态。采用改进小波阈值去除多振动传感器采集的机械设备振动信号噪声成分后,经基于多传感器信息融合的信号特征提取方法,提取去噪后振动信号幅值的均方根、方差、峰值、脉冲、峭度、均值、最大值、最小值、峰峰值、方根幅值特征,并使用特征级与数据级融合方式,将多信号特征信息融合;通过基于极限学习机优化的设备状态智能检测方法,以特征信息分类的方式,将融合后的设备振动信号特征作为分类目标,根据特征值的上下限,判断设备运行状态。实验验证表明,此方法应用下,多传感器对船舶机械设备振动信号的感知时间差极短,可缩短设备状态检测延迟,并准确检测设备异常状态。 This paper studies the intelligent detection method of ship mechanical equipment state based on multi-sensor information fusion, and intelligently diagnoses the abnormal state of ship mechanical equipment. After removing the noise components of mechanical equipment vibration signals collected by multiple vibration sensors by using improved wavelet threshold, the root mean square, variance, peak value, pulse, kurtosis, mean value, maximum value, minimum value, peak to peak value and root square amplitude characteristics of vibration signal amplitude after noise removal are extracted by using the signal feature extraction method based on multi-sensor information fusion, and the feature level and data level fusion method is used to fuse the multi signal feature information. Through the intelligent detection method of equipment state based on the optimization of limit learning machine, the fused equipment vibration signal features are used as the classification target in the way of feature information classification, and the equipment operation state is judged according to the upper and lower limits of the eigenvalue. Experimental verification: under the application of this method, the perception time difference of multi-sensor to the vibration signal of ship mechanical equipment is extremely short, which can shorten the delay of equipment status detection and accurately detect the abnormal status of equipment.
作者 刘艳宾 陈光伟 LIU Yan-bin;CHEN Guang-wei(Henan Wisdom Education and Intelligent Technology Application Engineering Technology Research Center,Zhengzhou 451460,China)
出处 《舰船科学技术》 北大核心 2022年第23期173-176,共4页 Ship Science and Technology
基金 河南省教育厅科技项目(21B460022) 2022年度河南省高等学校重点科研项目(22A880027)。
关键词 多传感器 信息融合 船舶机械设备 状态智能检测 改进小波阈值 极限学习机 multi-sensor information fusion ship machinery and equipment state intelligent detection improved wavelet threshold extreme learning machine
  • 相关文献

参考文献6

二级参考文献44

共引文献59

同被引文献25

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部