期刊文献+

船舶能耗模型构建及清洁能源适用性分析

Ship energy consumption model construction and clean energy applicability analysis
下载PDF
导出
摘要 清洁能源应用是航运业实现减碳目标的主要措施,清洁能源动力船舶的运行特点与通航环境的关联性比柴油动力船更大,准确计算船舶能耗和排放是清洁能源适用性分析的前提。采用Matlab/Simulink平台,构建基于通航环境和实际营运策略的能耗计算模型。以长江7 500吨级干散货船为例,综合分析船舶采用不同能源动力形式的计算结果,推荐出适配的清洁能源应用方案。结果表明:当前阶段,LNG是适用的清洁能源,混合动力、柴油-LNG双燃料机械动力是适配的动力形式。 Clean energy application is the main measure to achieve the carbon reduction target in shipping industry. The operating characteristics of clean energy powered ships are more related to the navigational environment than diesel powered ships, and accurate calculation of energy consumption and emission of ships is the prerequisite for clean energy applicability analysis. Matlab/Simulink platform is used to construct an energy consumption calculation model based on the navigable environment and actual operation strategy. Taking the Yangtze River 7 500-ton dry bulk carrier as an example, the calculation results of different energy power forms are analyzed comprehensively, and the suitable clean energy application scheme is recommended. The results show that LNG is the applicable clean energy source at the current stage, and hybrid power and diesel-LNG dual-fuel mechanical power are the suitable power forms.
作者 谭韬 王丽铮 张伟 TAN Tao;WANG Li-zheng;ZHANG Wei(School of Naval Architecture Ocean and Energy Power Engineering,Wuhan University of Technology,Wuhan 430063,China;Wuhan Rules Research Institute,China Classification Society,Wuhan 430022,China)
出处 《舰船科学技术》 北大核心 2023年第1期135-140,共6页 Ship Science and Technology
基金 工程部高技术船舶创新技术专项(103-42200022)。
关键词 清洁能源 通航环境 营运策略 能耗模型 clean energy navigable environment operation strategy energy consumption models
  • 相关文献

参考文献7

二级参考文献51

  • 1Marine Environment Protection Committee. Prevention of air pollution from ships(Second IMO GHG Study 2009)[R]. London: International Maritime Organization, 2009.
  • 2Marine Environment Protection Committee. Prevention of air pollution from ships(Third IMO GHG Study 2014)[R]. London: International Maritime Organization, 2014.
  • 3BJILSMA S J. Minimal time route computation for ships with pre-specified voyage fuel consumption[J]. The Journal of Navigation, 2008, 61(4): 723-733.
  • 4LO K. A critical review of China’s rapidly developing renewable energy and energy efficiency policies[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 508-516.
  • 5BALLOU P J. Ship energy efficiency management requires a total solution approach[J]. Marine Technology Society Journal, 2013, 47(1): 83-95.
  • 6PSARAFTIS H N, KONTOVAS C A. Ship speed optimization: concepts, models and combined speed-routing scenarios[J]. Transportation Research Part C: Emerging Technologies, 2014, 44: 52-69.
  • 7SHAO Wei, ZHOU Pei-lin, THONG S K. Development of a novel forward dynamic programming method for weather routing[J]. Journal of Marine Science and Technology, 2012, 17(2): 239-251.
  • 8LINDSTAD H, ASBJ?RNSLETT B E, STR?MMAN A H. Reductions in greenhouse gas emissions and cost by shipping at lower speeds[J]. Energy Policy, 2011, 39(6): 3456-3464.
  • 9NORSTAD I, FAGERHOLT K, LAPORTE G. Tramp ship routing and scheduling with speed optimization[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(5): 853-865.
  • 10LEIFSSON L P, SAEVARSDOTTIR H, SIGUROSSON S P, et al. Grey-box modeling of an ocean vessel for operational optimization[J]. Simulation Modelling Practice and Theory, 2008, 16(8): 923-932.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部