摘要
利用单形的“偏正度量”和几何不等式理论,研究欧氏空间En中n维单形几何不等式的稳定性,证明了三个涉及单形内点的不等式是稳定的,同时给出相应的稳定性版本.从而为一般凸体的稳定性研究奠定基础.
By using the deviation regular metric and the theory of geometric inequality,the stability of some geometric inequalities for an n-simplex in the Euclidean space En is studied. It is proved that three geometric inequalities are stable,and the stability versions of inequality are given. Therefore,the study lays a foundation for the study on the stability of general convex bodies.
作者
孙玉婷
王文
杨世国
SUN Yu-ting;WANG Wen;YANG Shi-guo(College of Liberal Studies,Anhui Wenda University of Information Engineering,Hefei,Anhui,231201;Hefei Normal University,Hefei,Anhui,230601;Anhui Xinhua University,Hefei,An-hui,230088)
出处
《韩山师范学院学报》
2022年第6期9-16,共8页
Journal of Hanshan Normal University
基金
安徽省自然科学基金项目(项目编号:1908085QA04)
安徽文达信息工程学院校级一般科研项目(项目编号:XZR2019B02)。
关键词
偏正度量
稳定性
单形
内点
deviation regular metric
stability
simplex
interior points