期刊文献+

基于DCT域的遥感图像目标显著性检测算法 被引量:1

Salient target detection of remote sensing image based on DCT domain
下载PDF
导出
摘要 为进一步提升遥感图像目标检测的速度和精度,针对目标与周围环境存在一定特征差异的特点,提出一种基于离散余弦变换(DCT)域的遥感图像目标显著性检测算法。直接在DCT域中进行显著性检测,重点计算每个DCT块的自适应标准差作为DCT块之间的差异权重系数,并结合亮度、颜色和纹理特征差异矩阵生成最终结果。实验表明,该算法可以提高运行效率和检测精度。 To upgrade the velocity and accuracy of remote sensing image object detection,focusing on the differences between the target and surrounding area,this paper proposes a novel method for salient target detection based on discrete cosine transform(DCT)domain.It performs saliency detection in the DCT domain directly,and calculates its adaptive standard deviation for each DCT block as difference weight coefficient between the DCT blocks.Finally,the results generated by combining the brightness,color and texture feature difference matrix.Experimental results show that it has higher efficiency,and better detection accuracy and efficiency.
作者 罗雅丹 蓝如梦 谭盛辉 LUO Yadan;LAN Rumeng;TAN Shenghui(Guangxi Institute of Mapping,Nanning 530023,China)
出处 《智能计算机与应用》 2023年第2期165-168,共4页 Intelligent Computer and Applications
关键词 遥感图像 目标检测 DCT域 显著性 自适应标准差 remote sensing image object detection DCT domain saliency adaptive standard deviation
  • 相关文献

参考文献7

二级参考文献57

  • 1周志华.Multi-Instance Learning from Supervised View[J].Journal of Computer Science & Technology,2006,21(5):800-809. 被引量:12
  • 2贺霖,潘泉,赵永强.量测重构线性混合模型高光谱图像目标检测[J].电子学报,2007,35(1):23-27. 被引量:10
  • 3Dimitris M,David M,Gary A S.Hyperspectral image processing for automatic target detection applications[J].Lincoln Laboratory Journal,2003,14(1):79-116.
  • 4Li H,James H M.Parametric adaptive signal detection for hyperspectral imaging[J].IEEE Transactions on Signal Processing,2006,54(7):2704-2715.
  • 5Ranney K I,Soumekh M.Hyperspectral anomaly detection within the signal subspace[J].IEEE Geoscience and Remote Sensing Letters,2006,3(3):312-316.
  • 6Itti L,Koch C,Niebur E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
  • 7NavalPakkam V,Itti L.An integrated model of top-down and bottom-up attention for optimal object detection speed[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2006:2049-2056.
  • 8Frintrop S.VOCUS:a vsual attention system for object detection and goal-directed search[C]//Proceedings of Lecture Notes in Artificial Intelligence,2006.
  • 9Wei Longsheng,Sang Nong,Wang Yuehuan,et al.A dynamic saliency attention model based on local complexity[J].Digital Signal Processing,2012,22(5):760-767.
  • 10Ojala T,PietikAainen M,Harwood D.A comparative study of texture measures with classification based on featured distributions[J].Pattern Recognition,1996,29(1):51-59.

共引文献64

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部