期刊文献+

碟形天线耦合的CVD石墨烯室温太赫兹探测器

CVD Graphene Terahertz Detector Coupled by Bow-tie Antenna at Room Temperature
下载PDF
导出
摘要 基于本征高迁移率、无能隙光谱以及非特征频率吸收的特性,石墨烯在太赫兹频段的调制器和探测器应用被予以厚望。制备了碟形天线耦合的CVD石墨烯场效应晶体管太赫兹探测器,实现了室温的高灵敏太赫兹探测。采用Au膜辅助转移技术屏蔽了有机物对石墨烯的沾污,配合自对准工艺控制了栅源间寄生效应,石墨烯器件场效应迁移率达7000 cm^(2)/(V·s),且在室温下表现出较高的太赫兹探测灵敏度,0.3 THz频率下器件的电压响应率为50 V/W,噪声等效功率为58 pW/Hz0.5。 Owing to its high carrier mobility,gapless spectrum and frequency-independent absorption,graphene is a very promising material for the development of detectors and modulators in the terahertz frequency band.Here,the terahertz detectors with high-sensitivity at room temperature based on bow-tie antenna-coupled CVD graphene field-effect transistors(FETs)were demonstrated.Au film was employed as the assistant transfer layer,which kept CVD graphene free from organic contaminations,together with self-aligned process that minimizes the ungated graphene region.As a result,the field effect mobility of graphene device is 7000 cm^(2)/(V·s)was obtained for graphene channel,and the graphene device shows high-sensitivity terahertz direct detecting at room temperature.The responsivity of the device is 50 V/W and noise equivalent power(NEP)is 58 pW/Hz0.5at 0.3 THz.
作者 魏仲夏 吴云 曹正义 陶然 李忠辉 WEI Zhongxia;WU Yun;CAO Zhengyi;TAO Ran;LI Zhonghui(CETC Key Laboratory of Carbon-based Electronics,Nanjing,210016,CHN;Science and Technology on Monolithic Integrated Circuits and Modules Laboratory,Nanjing,210016,CHN;Nanjing Electronic Device Institute,Nanjing,210016,CHN)
出处 《固体电子学研究与进展》 CAS 北大核心 2022年第6期456-460,共5页 Research & Progress of SSE
关键词 太赫兹探测器 石墨烯 场效应晶体管 terahertz detector graphene field-effect transistor
  • 相关文献

参考文献1

二级参考文献19

  • 1Kleine-Ostmann T and Nagatsuma T 2011 Journal of Infrared, Millimeter, and Terahertz Waves 32 143.
  • 2Siegel P H 2004 Microwave Symposium Digest, IEEE MTT-S International 3 1575.
  • 3Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F and Zimdars D 2005 Semicond. Sci. Technol. 20 S266.
  • 4Dyakonov M I and Shur M S 1996 IEEE T Electron Dev. 43 1640.
  • 5Sun Y F, Sun J D, Zhang X Y, Qin H, Zhang B S and Wu D M 2012 Chin. Phys. B 21 108504.
  • 6Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666.
  • 7Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V and Tredicucci A 2012 Nat. Mater. 11 865.
  • 8Colombo L, Wallace R M and Ruoff R S 2013 Proceed. IEEE 101 1536.
  • 9Reina A, Jia X, J Ho, Nezich D, Son H, Bulovic V, Dresselhaus M S and Kong J 2008 Nano Lett. 9 30.
  • 10Tan R B, Qin H, Sun J D, Zhang X Y and Zhang B S 2013 Appl. Phys. Lett. 103 173507.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部