期刊文献+

注意力机制LSTM虚拟机能耗建模方法 被引量:1

Energy consumption modeling method of attention mechanism LSTM virtual machine
下载PDF
导出
摘要 云计算平台因海量资源池带来了巨大的能耗开销。以虚拟机为粒度,进行灰色关联度分析,采用Hypervisor技术监控虚拟机运行状态参数,引入注意力机制进行LSTM虚拟机能耗建模,模型激活函数采用LeakRelu函数。实验数据呈现能耗模型的实时功率平均误差为5.6%。实验模型对比LSTM、MLP、SVM及K近邻算法,选用WordCount与Sort任务进行虚拟机能耗模型测评,实验结果表明,能耗建模质量优于LSTM、MLP、SVM及K近邻算法。 The cloud computing platform causes huge energy consumption due to its massive resource pool. Virtual machine(VM) was used as the granularity, grey relation analysis was implemented, Hypervisor technology was selected to monitor VM operating state parameters, and an attention mechanism was introduced to model energy consumption of LSTM virtual machines. The activation function used the LeakRelu function. Experimental data show that the average real-time power error of the energy consumption model is 5.6%. Furthermore, the experiment used WordCount and Sort tasks to compare the quality of VM energy consumption modeling for LSTM, MLP, SVM and KNN algorithms. The results show that the quality of energy consumption modeling is better than that of LSTM, MLP, SVM, and KNN algorithms.
作者 陈俊 李丹丹 席宁丽 田红珍 CHEN Jun;LI Dan-dan;XI Ning-li;TIAN Hong-zhen(College of Education,Guizhou Normal University,Guiyang 550025,China)
出处 《计算机工程与设计》 北大核心 2023年第2期629-635,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(72164004) 贵州师范大学资助博士科研基金项目([2013]3-21号)。
关键词 云计算平台 虚拟机 灰色关联度分析 注意力机制 能耗模型 HYPERVISOR 线性回归 cloud computing platform virtual machine grey relational analysis attention mechanism energy consumption model Hypervisor linear regression
  • 相关文献

参考文献6

二级参考文献38

共引文献73

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部