期刊文献+

2,3-Butanediol from the leachates of pine needles induces the resistance of Panax notoginseng to the leaf pathogen Alternaria panax 被引量:1

下载PDF
导出
摘要 Compared with the use of monocultures in the field,cultivation of medicinal herbs in forests is an effective strategy to alleviate disease.Chemical interactions between herbs and trees play an important role in disease suppression in forests.We evaluated the ability of leachates from needles of Pinus armandii to induce resistance in Panax notoginseng leaves,identified the components via gas chromatography-mass spectrometry(GC-MS),and then deciphered the mechanism of 2,3-Butanediol as the main component in the leachates responsible for resistance induction via RNA sequencing(RNA-seq).Prespraying leachates and 2,3-Butanediol onto leaves could induce the resistance of P.notoginseng to Alternaria panax.The RNA-seq results showed that prespraying 2,3-Butanediol onto leaves with or without A.panax infection upregulated the expression of large number of genes,many of which are involved in transcription factor activity and the mitogen-activated protein kinase(MAPK) signaling pathway.Specifically,2,3-Butanediol spraying resulted in jasmonic acid(JA)-mediated induced systemic resistance(ISR) by activating MYC2 and ERF1.Moreover,2,3-Butanediol induced systemic acquired resistance(SAR) by upregulating pattern-triggered immunity(PTI)-and effector-triggered immunity(ETI)-related genes and activated camalexin biosynthesis through activation of WRKY33.Overall,2,3-Butanediol from the leachates of pine needles could activate the resistance of P.notoginseng to leaf disease infection through ISR,SAR and camalexin biosynthesis.Thus,2,3-Butanediol is worth developing as a chemical inducer for agricultural production.
出处 《Plant Diversity》 SCIE CAS CSCD 2023年第1期104-116,共13页 植物多样性(英文版)
基金 supported by the National Key Research and Development Program of China (2017YFC1702502) the Major Science and Technology Project in Yunnan Province(202102AE090042 202102AA310048-2) Science and Technology Project of Kunming (2021JH002) Innovative Research Team of Science and Technology in Yunnan Province (202105AE160016)。
  • 相关文献

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部