期刊文献+

改进小波亮度融合的低照度图像增强算法 被引量:2

Low illumination image enhancement algorithm based on wavelet transform
下载PDF
导出
摘要 针对普通小波分解算法应用到夜间低照度图像增强时出现无法提取出边缘光滑特征点、且亮度拉伸曝光等问题,提出了一种改进小波亮度融合的低照度图像增强算法.在小波变换对夜间低照度图像进行频域变换的过程中分别提取出图像的低频和高频分量,并对高低频分量分别处理.对小波分解后形成的低频成分使用加入权值的引导滤波,得到边缘增强的低频分量.将高频成分基于不同的区域范围进行特性融合,得到细节均匀统一的高频分量.将处理后的分量进行亮度提取与融合,最后转入RGB空间得到增强图像.仿真实验结果表明,该算法在均值、信息熵、峰值信噪上相较于直方图均衡算法提高了21.715%、13.531%、73.768%,相较于小波变换提高了85.456%、26.014%、19.621%. A new low-illumination image enhancement algorithm based on improved wavelet brightness fusion was presented,which can not extract smooth edge features and stretch exposure when ordinary wavelet decomposition algorithm was applied to night low-illumination image enhancement.The low-frequency and high-frequency components of the night low-intensity image were extracted and processed separately during the frequency domain transformation of the night low-intensity image by the wavelet transformation.The low-frequency components formed by the wavelet decomposition were filtered by a guided filter with weights to get the edge-enhanced low-frequency components.The high frequency components were fused based on different region ranges to obtain uniform high frequency components with uniform details.The processed components were extracted and fused into RGB space to get the enhanced image.The simulation results showed that the algorithm improved 21.715%,13.531%,73.768%in mean,information entropy and peak signal-noise compared with the histogram equalization algorithm,and 85.456%,26.014%,19.621%compared with the wavelet transform.
作者 任珊珊 姚善化 REN Shan-shan;YAO Shan-hua(College of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan 232000,Anhui)
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2023年第1期60-66,共7页 Journal of Harbin University of Commerce:Natural Sciences Edition
基金 国家自然科学基金面上项目(52174141) 安徽省自然科学基金面上项目(2108085ME158)。
关键词 小波变换 加权引导滤波 区域特性融合 亮度融合 低照度 图像增强 wavelet transform weighted guided filtering regional feature fusion brightness fusion low illumination image enhancement
  • 相关文献

参考文献3

二级参考文献32

  • 1王保平,刘升虎,范九伦,谢维信.基于模糊熵的自适应图像多层次模糊增强算法[J].电子学报,2005,33(4):730-734. 被引量:33
  • 2江巨浪,张佑生,薛峰,胡敏.保持图像亮度的局部直方图均衡算法[J].电子学报,2006,34(5):861-866. 被引量:64
  • 3Kim J Y, Kim L S, Hwang S H. An advanced contrast enhancement using partially overlapped sub-block histogram equalization [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007,11 (4): 475-484.
  • 4Zhou S M, Gan J Q, Xu L D, et al.. Interactive image enhancement by fuzzy relaxation [J]. International Journal of Automation and Computing, 2007,4 (3): 229-235.
  • 5Cheng H D, Xue M, Shi X J, et al.. Novel contrast enhancement approach based on fuzzy homogeneity [J]. Optical Engineering, 2007,46 (4): 047002.
  • 6Menotti David, Najman Laurent, Facon Jacques, et al.. Multihistogram equazation methods for contrast enhancement and brightness preserving [J]. IEEE Transactions on Consumer Electronics, 2007,53 (3): 1186-1194.
  • 7Wang Qing, Ward Rabab Kreidieh. Fast image/video contrast enhancement based on weighted threshold histogram equalization [J]. IEEE Transactions on Consumer Electronics,2007,53 (2): 757-764.
  • 8Wang B J, Liu S Q, Li Q, et al.. A real-time contrast enhancement algorithm for infrared images based on plateau histogram [J]. Infrared Physics & Technology, 2006,48 (1): 77-82.
  • 9Jacobs Katrien, Loscos Celine, Ward Greg. Automatic highdynamic range image generation for dynamic scenes [J]. IEEE Computer Graphics and Applications, 2008,28 (2): 84-93.
  • 10Abdullah A W M, Kabir M H, Dewan M A A, et al.. A dynamic histogram equalization for image contrast enhancement [J]. IEEE Transactions on Consumer Electronics, 2007,53 (2): 593-600.

共引文献48

同被引文献24

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部