期刊文献+

A novel electrolytic-manganese-residues-and-serpentine-based composite(S-EMR) for enhanced Cd(Ⅱ) and Pb(Ⅱ) adsorption in aquatic environment

原文传递
导出
摘要 Electrolytic manganese residue(EMR) is the waste slag generated from the electrolysis manganese industry.As a promising exploitable adsorbent,EMR has become a hot research topic.However,EMR’s low adsorption capacity has limited its applications as an efficient adsorbent.In this study,the EMR was mixed with serpentine and calcined(at 800℃ for 2 h) to prepare a composite adsorbent(S-EMR) with its specific surface area of 11.998 m^(2)·g^(-1)(increased compared to the original EMR) and improved adsorption capacities for Cd^(2+)(98.05 mg·g^(-1)) and Pb^(2+)(565.81 mg·g^(-1)).Kinetic studies have shown that the pseudo-first-order kinetics(PSO)model could best describe the adsorption kinetics of S-EMR for Cd^(2+)/Pb^(2+),implying that the chemisorption process is the rate-limiting step.The effects of different interfering ions on S-EMR’ s adsorption for Cd^(2+)/Pb^(2+)may be due to the difference in their electronegativity.Results of response surface methodology tests showed that pH had the highest influence on adsorption,and the removal efficiency of S-EMR reached 99.92% for Cd(Ⅱ) and 94.00%for Pb(Ⅱ).X-ray photoelectron spectroscopy(XPS) analyses revealed that chemical precipitation was the predominant mechanism for Cd^(2+)/Pb^(2+)removal,and the adsorption mechanisms were associated with ion exchange and electrostatic attraction.The results showed that S-EMR could be used as an effective adsorbent for the removal of Cd(Ⅱ)/Pb(Ⅱ) from water bodies,rendering dual benefits of pollution control and resource recovery.
出处 《Rare Metals》 SCIE EI CAS CSCD 2023年第1期346-358,共13页 稀有金属(英文版)
基金 financially supported by the Open-Up and Innovation Funds of Hubei Three Gorges Laboratory (No.SK211004)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部