期刊文献+

高温亲水性键合结合离子束剥离技术制备晶圆级β-Ga_(2)O_(3)/SiC异质集成材料

Wafer-scale single-crystalline β-Ga_(2)O_(3) thin film on SiC substrate by ion-cutting technique with hydrophilic wafer bonding at elevated temperatures
原文传递
导出
摘要 将β-Ga_(2)O_(3)与高导热SiC衬底异质集成可以有效解决氧化镓高功率电子器件的散热问题.本文通过高温亲水性键合结合离子束剥离技术,将2英寸的高质量(201)β-Ga_(2)O_(3)单晶薄膜转移到了4H-SiC衬底上.为理解离子束剥离β-Ga_(2)O_(3)薄膜的物理机制,我们系统地研究了注氢β-Ga_(2)O_(3)表面起泡的演变过程及该过程中气泡内部的压力变化.采用有限元模拟预测合适的键合温度,通过将β-Ga_(2)O_(3)和4H-SiC晶圆在96℃的温度下进行高温亲水性键合,有效降低了离子束剥离过程中异质界面上的热应力,防止β-Ga_(2)O_(3)/4H-SiC键合对的解键合以实现薄膜的转移.X射线衍射结果表明,转移的β-Ga_(2)O_(3)薄膜具有窄的衍射峰半高宽,为79.2 arcsec.对薄膜进行化学机械抛光后,获得了极光滑的表面,均方根粗糙度仅0.1 nm.采用高温亲水性键合结合离子束剥离技术制备的β-Ga_(2)O_(3)/4H-SiC异质集成材料将成为开发高性能β-Ga_(2)O_(3)功率器件提供实用平台. Heterogeneous integration of β-Ga_(2)O_(3) on a highly thermal conductive SiC substrate is an efficient solution to solve its bottleneck of thermal dissipation for high-power electronics.In this work,a 2-inch high-quality(201) β-Ga_(2)O_(3) single-crystalline film was transferred to the 4H-SiC substrate via the ion-cutting technique with hydrophilic bonding at elevated temperatures.The evolution process of the surface blistering on the hydrogen-implanted β-Ga_(2)O_(3) together with the internal pressure in blisters were investigated systematically to understand the physical mechanisms of the ion-cutting of β-Ga_(2)O_(3) thin film.As suggested by the finite element simulation,the hydrophilic bonding was carried out at an elevated bonding temperature of 96℃to prevent the debonding of β-Ga_(2)O_(3)/4H-SiC during the ion-cutting process via reducing the thermal stress.The astransferred β-Ga_(2)O_(3) thin film exhibited a narrow full width at half maximum of the X-ray diffraction of 79.2 arcsec,and an extremely smooth surface with a root-mean-square roughness of 0.1 nm was achieved after chemical mechanical polishing.It is expected that the β-Ga_(2)O_(3)/4H-SiC heterogeneous integration material obtained by the ion-cutting technique with hydrophilic bonding at elevated temperatures will serve as a practical platform for high-performance β-Ga_(2)O_(3) power devices.
作者 沈正皓 徐文慧 陈阳 林家杰 谢玉环 黄凯 游天桂 韩根全 欧欣 Zhenghao Shen;Wenhui Xu;Yang Chen;Jiajie Lin;Yuhuan Xie;Kai Huang;Tiangui You;Genquan Han;Xin Ou(State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;College of Information Science and Engineering,Jiaxing University,Jiaxing 314001,China;The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology,School of Microelectronics,Xidian University,Xi’an 710071,China)
出处 《Science China Materials》 SCIE EI CAS CSCD 2023年第2期756-763,共8页 中国科学(材料科学(英文版)
基金 supported by the National Natural Science Foundation of China(61874128 and 62174167) the Frontier Science Key Program of CAS(QYZDY-SSW-JSC032 and ZDBS-LY-JSC009) the Program of Shanghai Academic Research Leader(19XD1404600) K.C.Wong Education Foundation(GJTD-2019-11) the Key Research Project of Zhejiang Laboratory(2021MD0AC01)。
关键词 剥离技术 功率电子器件 化学机械抛光 异质集成 均方根粗糙度 晶圆级 氧化镓 功率器件 β-Ga_(2)O_(3) heterogeneous integration surface blistering thermal stress hydrophilic bonding
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部