摘要
目的探究腮腺肿瘤良恶性的诊断中应用基于多序列MRI的影像组学模型的临床价值。方法选取2021年1月1日—2022年5月30日于台州市中心医院就诊经病理检查证实的腮腺肿瘤患者共97例,其中良性肿瘤64例,恶性肿瘤33例,提取患者的临床资料及MRI图像。通过ITK-SNAP软件分割感兴趣区域(ROI),使用3D-slicer软件的PyRadiomics插件在T_(1)加权对比增强成像序列(T_(1)Wce)、T_(2)加权序列(T_(2)WI)及基于弥散加权成像(DWI)序列构建的表观弥散系数(ADC)图像中提取120个影像特征,使用Lasso回归进行特征降维,最后使用筛选的影像特征构建支持向量机(SVM)模型。然后绘制ROC曲线,评估模型的诊断效能。结果2组患者年龄、性别差异无统计学意义。基于患者T_(1)Wce、T_(2)WI和ADC序列以及3个序列联合构建4个影像组学模型用于腮腺肿瘤良恶性诊断,AUC分别为T_(1)Wce模型0.752,T_(2)WI模型0.776,ADC模型0.810,T_(1)Wce+T_(2)WI+ADC联合模型0.897,三序列联合模型的AUC显著高于单个序列模型。结论基于MRI影像数据构建的影像组学模型能够有效用于辅助腮腺肿瘤的良恶性诊断,其中联合T_(1)Wce、T_(2)WI和ADC序列构建的模型具有最佳的诊断效能。
Objective The clinical value of multi-sequence MRI image data-based radiomics in the diagnosed of benign and malignant parotid gland tumors.Methods A total of 97 patients with parotid gland tumours diagnosed by pathological examination in Taizhou Central Hospital from January 1,2021 to May 30,2022 were selected,including 64 benign tumours and 33 malignant tumours.Meantime,patients'clinical data and MRI images were extracted.ITK-SNAP was used to segment regions of interest.In addition,PyRadiomics plugin of 3D-Slicer was used to extract 120 image features from T_(1)-weighted contrast enhancement images(T_(1)Wce),T_(2)-weighted images(T_(2)WI)and apparent diffusion coefficient(ADC)images that were constructed on the basis of diffusion-weighted imaging(DWI)sequence.Then,Lasso regression was used for the reduction of image features.Finally,a support vector machine model(SVM)was constructed using the selected image features.Then,the ROC curve was drawn to evaluate the diagnostic efficiency of each model.Results No significant differences in age and gender ratio was observed between the two groups.Four imaging models were constructed,including the models based on T_(1)Wce,T_(2)WI,ADC images and the combination of the three sequences.The AUC was as follows:T_(1)Wce model 0.752,T_(2)WI model 0.776,ADC model 0.810,T_(1)Wce+T_(2)WI+ADC model 0.897.The AUC of the three-sequence combination model was significantly higher than that of the single-sequence model.Conclusion The radiomics model based on MRI image data can be effectively used for assisting the diagnosis of benign and malignant parotid gland tumours.Moreover,the model based on the combination of T_(1)Wce,T_(2)WI and ADC images has the best diagnostic efficiency.
作者
徐祖良
盛亮
何遐遐
王艳娜
汪国余
XU Zu-liang;SHENG Liang;HE Xia-xia;WANG Yan-na;WANG Guo-yu(Department of Radiology,Taizhou Central Hospital,Taizhou,Zhejiang 318000,China;不详)
出处
《中华全科医学》
2023年第1期108-111,共4页
Chinese Journal of General Practice
基金
浙江省卫生健康科技计划项目(2021KY396)。
关键词
腮腺肿瘤
磁共振成像
影像组学
机器学习
支持向量机
Parotid gland tumour
Magnetic resonance imaging
Radiomics
Machine learning
Support vector machine