期刊文献+

基于卷积稀疏表示的内外部指纹融合方法研究 被引量:1

Research on internal and external fingerprint fusion method based on convolutional sparse representation
下载PDF
导出
摘要 针对多传感器采集的内外指纹质量各有优缺点的问题,提出结合方向确定度(OCL)质量评估和基于卷积稀疏表示的形态成分分析模型(CSMCA)的内外指纹融合方法OCL-CSMCA。通过将内部与外部指纹图像进行分解、添加像素级方向确定度(OCL)约束、融合与重建,实现内外指纹图像融合。对比实验表明,本文融合指纹图像在改善视觉效果、提高指纹质量、增大有效面积、指纹匹配能力以及细节点正确提取等方面表现良好。 Internal and external fingerprints collected by multiple sensors have their respective advantages and disadvantages.A new internal and external fingerprint fusion method called OCL-CSMCA is proposed,which combines the orientation certainty level(OCL)evaluator and the convolutional sparse representation based morphological component analysis model(CSMCA).By internal and external fingerprint images decomposition,pixel-level OCL constraints integration,fusion and reconstruction,the internal and external fingerprint fusion is realized.Comparative experimental results show that the proposed method can better improve the visual effect and quality of the fused fingerprints,while increasing the effective area.In addition,the fused fingerprints obtained by the proposed method perform well in terms of minutiae extraction and matching.
作者 崔静静 王海霞 陈朋 蒋莉 张怡龙 CUI Jingjing;WANG Haixia;CHEN Peng;JIANG Li;ZHANG Yilong(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310000;College of Information Engineering,Zhejiang University of Technology,Hangzhou 310000)
出处 《高技术通讯》 CAS 2022年第11期1153-1165,共13页 Chinese High Technology Letters
基金 国家自然科学基金(61976189,61905218) 浙江省自然科学基金(LY19F050011) 浙江省基础公益研究计划项目(LGG19F020011) 浙江省属高校基本科研业务费专项资金(RF-C2019001)资助项目。
关键词 外部指纹 内部指纹 多传感器 方向确定度(OCL) 融合指纹 external fingerprint internal fingerprint multiple sensors orientation certainty level(OCL) fusion fingerprint
  • 相关文献

参考文献2

二级参考文献24

  • 1Zhou R,Zhong D, Han J. Fingerprint identification usingSIFT-based minutia descriptors and improved all descrip-tor-pair matching[J]. Sensors,2013,13(3) ;3142-3156.
  • 2Wang Y,Hu J. Global ridge orientation modeling for par-tial fingerprint identification [ J]. IEEE Transactions onPattern Analysis and Machine Intelligence, 2011,33 (1):72-87.
  • 3Matsumoto T, Matsumoto H, Yamada K, et al. Impact ofartificial 4 gummy' fingers on fingerprint systems [ A].Proc. of SPIE[C]. 2002,4677:275-289.
  • 4Babatunde I G, Charles A O, Kay ode A B, et al. Finger-print image enhancement: segmentation to thinning[J]. In-ternational Journal of Advanced Computer Science andApplications,2012,3(1) :15-24.
  • 5Gottschlich C. Curved-region-based ridge frequency esti-mation and curved gabor filters for fingerprint image en-hancement[J]. IEEE Transactions on Image Processing,2012,21(4):2220-2227.
  • 6Cappelli R,Ferrara M, Maltoni D. Minutiae-based finger-print matching[J]. Cross Disciplinary Biometric Systems,2012,37:117-150.
  • 7Liu F, Zhao Q,Zhang D. A novel hierarchical fingerprintmatching approach[J]. Pattern Recognition, 2011,44 (8):1604-1613.
  • 8Qian K, Schott M’Sch. ne W, et al. Separation of high-resolution samples of overlapping latent fingerprints usingrelaxation labeling[A]. Proc. of SPIE [C]. 2012, 8436:84361A.
  • 9Huang D,Swanson E A,Lin C P,et al. Optical coherencetomography[J]. Science,1991,254(5035) : 1178-1181.
  • 10ZHANG Xian-ling, GAO Wan-rong, BIAN Hai-yi, et al.Study of de-noising based on empirical mode decomposi-tion method in optical coherence tomography[Jj. Journalof Optoelectronics . Laser.2012,23C3) :602-608.

共引文献10

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部