期刊文献+

Some mathematical aspects of Anderson localization:boundary effect,multimodality,and bifurcation

原文传递
导出
摘要 Anderson localization is a famous wave phenomenon that describes the absence of diffusion of waves in a disordered medium.Here we generalize the landscape theory of Anderson localization to general elliptic operators and complex boundary conditions using a probabilistic approach,and further investigate some mathematical aspects of Anderson localization that are rarely discussed before.First,we observe that under the Neumann boundary condition,the low energy quantum states are localized on the boundary of the domain with high probability.We provide a detailed explanation of this phenomenon using the concept of extended subregions and obtain an analytical expression of this probability in the one-dimensional case.Second,we find that the quantum states may be localized in multiple different subregions with high probability in the one-dimensional case and we derive an explicit expression of this probability for various boundary conditions.Finally,we examine a bifurcation phenomenon of the localization subregion as the strength of disorder varies.The critical threshold of bifurcation is analytically computed based on a toy model and the dependence of the critical threshold on model parameters is analyzed.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2022年第11期45-64,共20页 理论物理通讯(英文版)
基金 the support from National Natural Science Foundation of China with grants No.11871092,No.12131005 NSAF U1930402。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部