期刊文献+

Multi-frequency switch and excellent slow light based on tunable triple plasmon-induced transparency in bilayer graphene metamaterial

原文传递
导出
摘要 We propose a novel bilayer graphene terahertz metamaterial composed of double graphene ribbons and double graphene rings to excite a dynamically adjustable triple plasma-induced transparency(PIT)effect.The coupled mode theory(CMT)is used to explain the PIT phenomenon,and the results of the CMT and the finite-difference time-domain simulation show high matching degree.By adjusting the Fermi levels of graphene,we have realized a pentafrequency asynchronous optical switch.The performance of this switch,which is mainly manifested in the maximum modulation depth(MD=99.97%)and the minimum insertion loss(IL=0.33 dB),is excellent.In addition,we have studied the slow-light effect of this triple-PIT and found that when the Fermi level of graphene reaches 1.2 eV,the time delay can reach 0.848ps.Therefore,this metamaterial provides a foundation for the research of multi-frequency optical switches and excellent slow-light devices in the terahertz band.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2022年第11期170-179,共10页 理论物理通讯(英文版)
基金 Project supported by National Natural Science Foundation of China(NSFC)(61605018,11904032,61841503)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部